
Risks of Computers

Steven M. Bellovin January 31, 2018 1

“Anything that can go wrong, will.”

As in so many other things, computers intensify the effect. . .

Steven M. Bellovin January 31, 2018 2

Why

• Speed

• Complexity

• Access

• Arrogance

• Excessive trust

Steven M. Bellovin January 31, 2018 3

Speed

• Today, things can go wrong at multigigahertz speeds

• Multicore makes them go wrong even faster

• Often too fast for human review or intervention

Steven M. Bellovin January 31, 2018 4

Complexity

• We generally do not have full understanding of our systems

• There are often unforeseen interactions

• It is rarely possible to test thoroughly

Steven M. Bellovin January 31, 2018 5

Access

• Many people have remote access to online machines (i.e., most of
them), far more than would have access to corresponding
non-computerized systems

• Often, the access is not intended by the designers. . .

• There are often inadquate logs

Steven M. Bellovin January 31, 2018 6

Arrogance

• Designers and programmers think they can build arbitrarily
complex—but correct—systems

• They also think they can do it on time and under budget

• Purchasers believe them

Steven M. Bellovin January 31, 2018 7

Arrogance

GLENDOWER I can call spirits from the vasty deep.

HOTSPUR Why, so can I, or so can any man;
But will they come when you do call for them?

King Henry IV, Part I
William Shakespeare

Steven M. Bellovin January 31, 2018 8

Trust

• People trust computer output

• “Garbage in, gospel out”

• (“Data in, garbage out”?)

Steven M. Bellovin January 31, 2018 9

Interactions

• Programs interact internally

• Systems of programs interact with each other

• Programs interact with users

• Programs interact with the environment

• All of these interactions interact with each other!

Steven M. Bellovin January 31, 2018 10

Users

• Users do strange things, things unanticipated by the designer

• There may be surrounding features unknown to the designer, different
styles of operation, etc.

• There are often subtle timing issues

Steven M. Bellovin January 31, 2018 11

The Environment

• Differences in OS version, configuration, etc., are problematic

• Physical interactions—RF energy, cosmic rays, alpha particles,
voltage fluctuations—can lead to failures

• Unanticipated constraints—RAM size, CPU speed, free disk space,
etc.—can cause trouble

Steven M. Bellovin January 31, 2018 12

Error Handling

• Programmers often do a poor job handling errors

• “That can’t happen”. . .

• Is it detected? What is the response? To panic? To die a horrible
death? To recover?

• How do you test, especially if it’s a hardware failure indication

• Sometimes, misbehaving hardware really misbehaves

Steven M. Bellovin January 31, 2018 13

NJ Transit Web Status Display

Steven M. Bellovin January 31, 2018 14

Bugs Happen

• It’s hard to test for all possible failure conditions

• Many problems are caused by combinations of bugs

• Complex systems fail for complex reasons

• Complexity is the major problem!

Steven M. Bellovin January 31, 2018 15

Example: 2003 Northeast Blackout

• Multiple causes!

• The operators didn’t fully understand their system

• The monitoring computers failed

• Power lines failed—and as some failed, other had to carry more of the
load, so they heated up and sagged.

• It was a warm day and the wind died, so there was less cooling; this
made them sag more—until one touched a tree

• Poor real-time data caused a cascade. . .

Steven M. Bellovin January 31, 2018 16

The Computer Failure

• The primary alarm server failed, because the alarm application failed
and/or because of too much data queued for remote terminals

• The system properly failed over to the backup server

• But—the alarm application moved its data to the backup server, so it
crashed, too. . .

Steven M. Bellovin January 31, 2018 17

Reliability is Hard

• Sometimes, critical systems are engineered for robustness

• Adding such features adds complexity

• This in turn can cause other kinds of failures

Steven M. Bellovin January 31, 2018 18

Example: the Space Shuttle

• The shuttle had four identical computers for hardware reliability, plus
another running different code

• The four were designed to have no single point of failure—which
meant that they couldn’t share any hardware

• A voting circuit matched the outputs of the primary computers; the
crew could manually switch to the backup computers

• But—a common clock would violate the “no single point of failure
rule”. . .

Steven M. Bellovin January 31, 2018 19

What Time is It?

• In a hard real-time system like space shuttle avionics, something will
always happen very soon

• Take the value of the first element in the timer queue as “now”

• However, there must be a special case for system initialization, when
the queue is empty

• A change to a bus initialization routine meant that 1/67 of the time,
the queue wouldn’t be empty during certain crucial boot-time
processing

• This in turn made it impossible for the back-up computer to
synchronize with the four primaries

• They scrubbed the very first launch, before a world-wide live TV
audience, due to a software glitch

Steven M. Bellovin January 31, 2018 20

The Basic Reliability Mechanism Did Work

• On the first “drop test” of the Enterprise, one computer did fail

• Vibration broke a solder joint
(http://www.universetoday.com/100050/
the-lessons-we-learned-from-space-shuttle-enterprise/)

• The other three computers did their job

• (Could their hardware have failed the same way?)

Steven M. Bellovin January 31, 2018 21

http://www.universetoday.com/100050/the-lessons-we-learned-from-space-shuttle-enterprise/
http://www.universetoday.com/100050/the-lessons-we-learned-from-space-shuttle-enterprise/

Example: the Phone System

• In January 1990, a processor on an AT&T phone switch failed

• During recovery, the switch took itself out of service

• When it came back up, it announced its status, which triggered a bug
in neighboring switches’ processors

• If those processors received two call attempts within 1/100th of a
second, they’d crash, causing a switch to the backup processor

• If the backup received two quick call attempts, it would crash

• When those processors rebooted, they’d announce that to their
neighbors. . .

• The root cause: a misplaced break statement

• The failure was a systems failure
Steven M. Bellovin January 31, 2018 22

Programs and Systems

• Two levels of problems, code and systems

• Code is buggy

• Systems are also buggy!

Steven M. Bellovin January 31, 2018 23

Buggy Code

• There seems to be an irreducible minimum bug rate in code

• Our code is always buggy

Steven M. Bellovin January 31, 2018 24

Firefox, April 2013

(From http://www.almossawi.com/firefox/)

4M lines of code, 1.7 bugs/Kloc⇒ about 6800 bugs—
and because of the methodology, that’s an underestimate.

Steven M. Bellovin January 31, 2018 25

http://www.almossawi.com/firefox/

Systems are More Complex

• Brooks (The Mythical Man-Month) distinguishes between programs,
program products, program systems, and program system products

• He estimates that the transition to “system” or “product” costs 3× and
that “system product” is therefore 9×

• Why?

Steven M. Bellovin January 31, 2018 26

System Complexity

• Many different component, each of which is a complex program

• The components have to interact—will that work?

+ Is the interface between the components precisely and correctly
specified?

• The different components likely share common subprocedures, which
means that these have to have correct, precise interfaces and they
must meet the needs of each component of the whole system

+ Fixing a shared piece to repair a bug in one component could break a
different one

Steven M. Bellovin January 31, 2018 27

Product Complexity

• Products need generalization

• Products need documentation

• Products need support

Steven M. Bellovin January 31, 2018 28

N-Version Programming

• Common assumption: have different programmers write independent
versions; overall reliability should increase

• But—bugs are correlated

• Sometimes, the specification is faulty—estimates range from 25–50%

• (“Flaws” versus “bugs”)

• Other times, common misperceptions or misunderstandings will
cause different programmers to make the same mistake

Steven M. Bellovin January 31, 2018 29

Thinking Alike

• Many things are taught in standardized ways (often because of
popular texts or current technical fads)

+ Kernighan and Plauger’s Elements of Programming Style relied on
examples of bad code from other books

• Cultural biases: left-to-right versus right-to-left

Steven M. Bellovin January 31, 2018 30

Achieving Reliability

• All that said, there are some very reliable systems

• Indeed, the space shuttle’s software has been widely praised

• The phone system almost always works (though of course not
always)

• How?

Steven M. Bellovin January 31, 2018 31

The Phone System

• A 1996 study showed four roughly-equal causes of phone switch
outage: hardware error, software error, operator error, and
miscellaneous

• The hardware was already ultrareliable—how did they get the
software failure rate that low?

• A lot of hard work and good design—which is reflected in the wording
of the question

Steven M. Bellovin January 31, 2018 32

Switch Design

• Primary goal: keep the switch working at all times

• No single call is important

• If anything appears wrong with a call, blow it away

• The caller will mutter, but retry—and the state in the phone switch will
be so different that the retry will succeed

• Plus—lots of error-checking, roll-back, restart, etc.

• All of this is hideously expensive to develop and test

Steven M. Bellovin January 31, 2018 33

A Tale of Two Airlines. . .

• WestJet and JetBlue wanted to switch to new, more capable
reservations systems

• They independently selected the same new system

• WestJet went first

• “Despite months of planning . . . its Web site crashed repeatedly and
its call center was overwhelmed. It took months to resolve all the
issues.” (WSJ, 12 Apr 2010)

Steven M. Bellovin January 31, 2018 34

Why?

• Massive data conversion: 840,000 files for existing reservations

• Too much complex hand-processing to convert files

• Too many passengers with reservations, despite the preemptive
cancelation of some flights

• For competitive reasons, they didn’t announce the conversion until
that day

Steven M. Bellovin January 31, 2018 35

Recovery

• Apology letters

• Flight credits

• Outsourced temporary call center

• A “three- to six-month recovery process”

Steven M. Bellovin January 31, 2018 36

JetBlue Went Second

• They picked a light-traffic weekend

• They kept their planes abnormally empty

• They developed and deployed a backup web server (it was needed
twice)

• They hired 500 temporary agents to handle routine calls, while their
own, experienced staff handled complex situations

• The extra agents stayed for two months—“one of the wisest
investments we made”

• There were still a few problems

Steven M. Bellovin January 31, 2018 37

The Differences

• Lighter load (though JetBlue is a bigger airline)

• Backup systems

• Personnel who were trained for conversion glitches

Steven M. Bellovin January 31, 2018 38

What Wasn’t a Problem

• For the most part, this did not involve new software development

• They were switching to an existing, well-tested product

• (There was undoubtedly some custom software written, both for the
conversion and for customization)

• JetBlue spent $40M—$25M in capital costs and $15M in one-time
operating expenses

• The problem was conversion

Steven M. Bellovin January 31, 2018 39

Conversion Principles

• Conversions never go smoothly

• If possible, run old and new systems in parallel for a while

• Lighten load

• Automate as much of the data conversion as possible

• Train people for the effort

• Temporarily shed non-essential features

Steven M. Bellovin January 31, 2018 40

Conversions are Still Hard

• When United and Continental merged, they had serious computer
problems 20 months after the merger, and two months after the new
system went live

• “Delta, which acquired Northwest in 2008, integrated its various
computer systems in stages, a process that went relatively smoothly.
United elected to tackle a bunch of integration tasks all at once.”

Steven M. Bellovin January 31, 2018 41

The Problem

• We are building—and relying on—increasingly complex systems

• We do not always understand the interactions

• The very best systems are very, very expensive—and even they fail
on occasion

Steven M. Bellovin January 31, 2018 42

Societal Implications

• We can’t trust computers too much

• On the other hand, we can’t trust them too little, either

• It’s easy to point at places where computer failures have caused harm

• It’s hard to point to specific cases where they’ve helped—but
statistically, they undoubtedly have

• Where is the balance point?

• It is difficult, a priori, to tell

Steven M. Bellovin January 31, 2018 43

Self-Driving Cars

• Humans are terrible drivers

• They get distracted, doze off, drink, etc.

• Computers will probably be better

• But—it’s all but certain that on occasion, buggy software will cause a
fatal crash

• That will be visible, but the lives saved will not be

• What will happen? What should happen?

Steven M. Bellovin January 31, 2018 44

What Do We Do?

• We know that certain things help: good management practices,
sound development environment environments, etc.

• We know that other things hurt: a poor notion of what the system
should do, fuzzy specs, many changes during development, etc.

• Usability, in a particular environment, also matters

Steven M. Bellovin January 31, 2018 45

Drug Dispensing in Hospitals

• (I assume you’ve all read the article. . .)

• The older, manual system was very error-prone, and probably killed
people

• The problem, though, is very complex: there are very many options,
and no “do what I mean” checkbox

• The failure described in the article was a systems failure

Steven M. Bellovin January 31, 2018 46

Systems Failures

• The problem is not caused by any one failure

• Rather, it took a cascade of decisions and failures:

– A non-standard dosing regimen, causing an alert

– A menu selection error by the doctor

– Bad working conditions for the pharmacist

– “Alert fatigue”

– An inexperienced nurse, working in an unfamiliar ward

– A research environment with many non-standard protocols

– Two children in the family being hospitalized at the same time

• Fixing any of those would have helped
Steven M. Bellovin January 31, 2018 47

Lack of Backup Mechanisms

• What should happen if the computer system fails?

• This is hard to design for and hard to test; by design, failures are rare
events

• Can the pilots fly the plane without the computers?

• Can the doctors do the surgery without the surgical robots?

• A few years ago, Amtrak’s master computer system failed—and they
couldn’t update their web site to say so, because the failed system
was how they programmed the web site

• But—the conductors could cope, even when passengers couldn’t get
their tickets from booths or kiosks

Steven M. Bellovin January 31, 2018 48

What is Your Plan B?

• You need to understand how to cope with the partial or complete
failure of your computer systems

• The more reliant you are on them, the more critical this is

• The more closely linked your computers are, the more likely a failure
will cascade

Steven M. Bellovin January 31, 2018 49

