
Risks of Computers

Steven M. Bellovin February 2, 2016 1



“Anything that can go wrong, will.”

As in so many other things, computers intensify the effect. . .

Steven M. Bellovin February 2, 2016 2



Why

• Speed

• Complexity

• Access

• Arrogance

• Excessive trust

Steven M. Bellovin February 2, 2016 3



Speed

• Today, things can go wrong at multigigahertz speeds

• Multicore makes them go wrong even faster

• Often too fast for human review or intervention

Steven M. Bellovin February 2, 2016 4



Complexity

• We generally do not have full understanding of our systems

• There are often unforeseen interactions

• It is rarely possible to test thoroughly

Steven M. Bellovin February 2, 2016 5



Access

• Many people have remote access to online machines (i.e., most of
them), far more than would have access to corresponding
non-computerized systems

• Often, the access is not intended by the designers. . .

• There are often inadquate logs

Steven M. Bellovin February 2, 2016 6



Arrogance

• Designers and programmers think they can build arbitrarily
complex—but correct—systems

• They also think they can do it on time and under budget

• Purchasers believe them

Steven M. Bellovin February 2, 2016 7



Trust

• People trust computer output

• “Garbage in, gospel out”

• (“Data in, garbage out”?)

Steven M. Bellovin February 2, 2016 8



Interactions

• Programs interact internally

• Systems of programs interact with each other

• Programs interact with users

• Programs interact with the environment

• All of these interactions interact with each other!

Steven M. Bellovin February 2, 2016 9



Users

• Users do strange things, things unanticipated by the designer

• There may be surrounding features unknown to the designer, different
styles of operation, etc.

• There are often subtle timing issues

Steven M. Bellovin February 2, 2016 10



The Environment

• Differences in OS version, configuration, etc., are problematic

• Physical interactions—RF energy, cosmic rays, alpha particles,
voltage fluctuations—can lead to failures

• Unanticipated constraints—RAM size, CPU speed, free disk space,
etc.—can cause trouble

Steven M. Bellovin February 2, 2016 11



Error Handling

• Programmers often do a poor job handling errors

• “That can’t happen”. . .

• Is it detected? What is the response? To panic? To die a horrible
death? To recover?

• How do you test, especially if it’s a hardware failure indication

• Sometimes, misbehaving hardware really misbehaves

Steven M. Bellovin February 2, 2016 12



NJ Transit Status Display

Steven M. Bellovin February 2, 2016 13



Bugs Happen

• It’s hard to test for all possible failure conditions

• Many problems are caused by combinations of bugs

• Complex systems fail for complex reasons

Steven M. Bellovin February 2, 2016 14



Example: 2003 Northeast Blackout

• Multiple causes!

• The operators didn’t fully understand their system

• The monitoring computers failed

• Power lines failed—and as some failed, other had to carry more of the
load, so they heated up and sagged.

• It was a warm day and the wind died, so there was less cooling; this
made them sag more—until one touched a tree

• Poor real-time data caused a cascade. . .

Steven M. Bellovin February 2, 2016 15



The Computer Failure

• The primary alarm server failed, because the alarm application failed
and/or because of too much data queued for remote terminals

• The system properly failed over to the backup server

• But—the alarm application moved its data to the backup server, so it
crashed, too. . .

Steven M. Bellovin February 2, 2016 16



Reliability is Hard

• Sometimes, critical systems are engineered for robustness

• Adding such features adds complexity

• This in turn can cause other kinds of failures

Steven M. Bellovin February 2, 2016 17



Example: the Space Shuttle

• The shuttle had four identical computers for hardware reliability, plus
another running different code

• The four were designed to have no single point of failure—which
meant that they couldn’t share any hardware

• A voting circuit matched the outputs of the primary computers; the
crew could manually switch to the backup computers

• But—a common clock would violate the “no single point of failure
rule”. . .

Steven M. Bellovin February 2, 2016 18



What Time is It?

• In a hard real-time system like space shuttle avionics, something will
always happen very soon

• Take the value of the first element in the timer queue as “now”

• However, there must be a special case for system initialization, when
the queue is empty

• A change to a bus initialization routine meant that 1/67 of the time,
the queue wouldn’t be empty during certain crucial boot-time
processing

• This in turn made it impossible for the back-up computer to
synchronize with the four primaries

• They scrubbed the very first launch, before a world-wide live TV
audience, due to a software glitch

Steven M. Bellovin February 2, 2016 19



The Basic Reliability Mechanism Did Work

• On the first “drop test” of the Enterprise, one computer did fail

• Vibration broke a solder joint
(http://www.universetoday.com/100050/
the-lessons-we-learned-from-space-shuttle-enterprise/)

• The other three computers did their job

• (Could their hardware have failed the same way?)

Steven M. Bellovin February 2, 2016 20

http://www.universetoday.com/100050/the-lessons-we-learned-from-space-shuttle-enterprise/
http://www.universetoday.com/100050/the-lessons-we-learned-from-space-shuttle-enterprise/


Example: the Phone System

• In January 1990, a processor on an AT&T phone switch failed

• During recovery, the switch took itself out of service

• When it came back up, it announced its status, which triggered a bug
in neighboring switches’ processors

• If those processors received two call attempts within 1/100th of a
second, they’d crash, causing a switch to the backup processor

• If the backup received two quick call attempts, it would crash

• When those processors rebooted, they’d announce that to their
neighbors. . .

• The root cause: a misplaced break statement

• The failure was a systems failure
Steven M. Bellovin February 2, 2016 21



Programs and Systems

• Two levels of problems, code and systems

• Code is buggy

• Systems are also buggy!

Steven M. Bellovin February 2, 2016 22



Buggy Code

• There seems to be an irreducible minimum bug rate in code

• Our code is always buggy

Steven M. Bellovin February 2, 2016 23



Firefox, April 2013

(From http://www.almossawi.com/firefox/)

4M lines of code, 1.7 bugs/Kloc⇒ about 6800 bugs—
and because of the methodology, that’s an underestimate.

Steven M. Bellovin February 2, 2016 24

http://www.almossawi.com/firefox/


Systems are More Complex

• Brooks (The Mythical Man-Month) distinguishes between programs,
program products, program systems, and program system products

• He estimates that the transition to “system” or “product” costs 3× and
that “system product” is therefore 9×

• Why?

Steven M. Bellovin February 2, 2016 25



System Complexity

• Many different component, each of which is a complex program

• The components have to interact—will that work?

• +] Is the interface between the components precisely and correctly
specified?

• The different comnoents likely share common subprocedures, which
means that these have to have correct, precise interfaces and they
must meet the needs of each component of the whole system

+ Fixing a shared piece to repair a bug in one component could break a
different one

Steven M. Bellovin February 2, 2016 26



N-Version Programming

• Common assumption: have different programmers write independent
versions; overall reliability should increase

• But—bugs are correlated

• Sometimes, the specification is faulty—estimates range from 25–50%

• (“Flaws” versus “bugs”)

• Other times, common misperceptions or misunderstandings will
cause different programmers to make the same mistake

Steven M. Bellovin February 2, 2016 27



Thinking Alike

• Many things are taught in standardized ways (often because of
popular texts or current technical fads)

+ Kernighan and Plauger’s Elements of Programming Stle relied on
examples of bad code from other books

• Cultural biases: left-to-right versus right-to-left

Steven M. Bellovin February 2, 2016 28



Achieving Reliability

• All that said, there are some very reliable systems

• Indeed, the space shuttle’s software has been widely praised

• The phone system almost always works (though of course not
always)

• How?

Steven M. Bellovin February 2, 2016 29



The Phone System

• A 1996 study showed four roughly-equal causes of phone switch
outage: hardware error, software error, operator error, and
miscellaneous

• The hardware was already ultrareliable—how did they get the
software failure rate that low?

• A lot of hard work and good design—which is reflected in the wording
of the question

Steven M. Bellovin February 2, 2016 30



Switch Design

• Primary goal: keep the switch working at all times

• No single call is important

• If anything appears wrong with a call, blow it away

• The caller will mutter, but retry—and the state in the phone switch will
be so different that the retry will succeed

• Plus—lots of error-checking, roll-back, restart, etc.

• All of this is hideously expensive

Steven M. Bellovin February 2, 2016 31



The Problem

• We are building—and relying on—increasingly complex systems

• We do not always understand the interactions

• The very best systems are very, very expensive—and even they fail
on occasion

Steven M. Bellovin February 2, 2016 32



Societal Implications

• We can’t trust computers too much

• On the other hand, we can’t trust them too little, either

• It’s easy to point at places where computer failures have caused harm

• It’s hard to point to specific cases where they’ve helped—but
statistically, they undoubtedly have

• Where is the balance point?

• It is difficult, a priori, to tell

Steven M. Bellovin February 2, 2016 33



Self-Driving Cars

• Humans are terrible drivers

• They get distracted, doze off, drink, etc.

• Computers will probably be better

• But—it’s all but certain that on occasion, buggy software will cause a
fatal crash

• That will be visible, but the lives saved will not be

• What will happen? What should happen?

Steven M. Bellovin February 2, 2016 34



What Do We Do?

• We know that certain things help: good management practices,
sound development environment environments, etc.

• We know that other things hurt: a poor notion of what the system
should do, fuzzy specs, many changes during development, etc.

• Usability, in a particular environment, also matters

Steven M. Bellovin February 2, 2016 35



Drug Dispensing in Hospitals

• (I assume you’ve all read the article. . . )

• The older, manual system was very error-prone, and probably killed
people

• The problem, though, is very complex: there are very many options,
and no “do what I mean” checkbox

• The failure described in the article was a systems failure

Steven M. Bellovin February 2, 2016 36



Systems Failures

• The problem is not caused by any one failure

• Rather, it took a cascade of decisions and failures:

– A non-standard dosing regimen, causing an alert

– A menu selection error by the doctor

– Bad working conditions for the pharmacist

– “Alert fatigue”

– An inexperienced nurse, working in an unfamiliar ward

– A research environment with many non-standard protocols

– Two children in the family being hospitalized at the same time

• Fixing any of those would have helped
Steven M. Bellovin February 2, 2016 37



Lack of Backup Mechanisms

• What should happen if the computer system fails?

• This is hard to design for and hard to test; by design, failures are rare
events

• Can the pilots fly the plane without the computers?

• Can the doctors do the surgery without the surgical robots?

• A few years ago, Amtrak’s master computer system failed—and they
couldn’t update their web site to say so, because the failed system
was how they programmed the web site

• But—the conductors could cope, even when passengers couldn’t get
their tickets from booths or kiosks

Steven M. Bellovin February 2, 2016 38



What is Your Plan B?

• You need to understand how to cope with the partial or complete
failure of your computer systems

• The more reliant you are on them, the more critical this is

• The more closely linked your computers are, the more likely a failure
will cascade

Steven M. Bellovin February 2, 2016 39


