Wiretapping and Surveillance II

Steven M. Bellovin __ February 11, 2015 __ 1

Snowden and the NSA

- Edward Snowden took a lot of documents from the NSA
- He gave them—many of them? most of them? all of them?—to a few reporters whom he trusted. (See Poitras' new documentary *Citizenfour*.)
- These documents have painted a broad, but not complete, portrait of the activities of the NSA and related organizations—and they lack context
- Some of these activities are customary for an intelligence agency; others are rather more surprising

How Did Snowden Get the Documents?

- Snowden was an employee of an NSA contractor
- He was the system administrator of some computers and networks in Hawaii
- He used the privileges of a sysadmin to override normal security controls
- It is unknown, apparently even internally, what he took or even how much

What is the NSA?

- Intercept other nation's communications
- Image: Signals Intelligence Directorate (SID)
 - Protect US communications
- Image: Some by the Information Assurance Directorate (IAD)
 - Also (of course) does cryptology, both creating and breaking mechanisms

Definitions

- **Cryptanalysis** breaking codes and ciphers; ability to read traffic without knowing the key
- **Cryptography** "secret writing"; creating codes and ciphers, and using them
- **Codes** operate on semantic concepts; they're seldom used today.
- **Ciphers** operate syntactically, i.e., on letters or bits, without regard to meaning.
- Cryptology The academic field, including cryptography and cryptanalysis
- **SIGINT** Signals Intelligence. Includes all forms of information, and includes (among other things) **COMINT** (communications intelligence) and **ELINT** (electronic intelligence)

HUMINT Human intelligence, i.e., spies

60-Second Cryptology Tutorial

• A cipher is a pair of mathematical functions:

$$\begin{array}{rcl} C &\leftarrow & F(K,P) \\ P &\leftarrow & F'(K,C) \end{array}$$

that use a *key* to map *plaintext* to *ciphertext* and ciphertext to plaintext

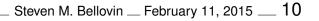
- A key is a large, random number
- If you know the key, you can convert ciphertext to plaintext
- If you don't, it should be impossible to invert the function
- It's always conceptually possible to try every possible key, so your design should have far more keys than can be tried
- Always assume that your enemy knows F and G

Public Key Cryptography

- Decryption may use a different key *K'* not derivable from *K*; this is called public key cryptography, because encryption key *K* can be public
- But K is derived from K'
- Public key crypto is at the heart of all Internet encryption
- Invented by Cocks and Ellis at GCHQ in 1970; they called it non-secret encryption
- Reinvented publicly by Diffie and Hellman in 1975; Ralph Merkle had some of the concepts, too

IAD

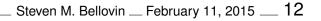
- Works with outside agencies and organizations to promulgate security technology
- Helps create encryption technology
- Develops computer security standards


The Groups Cooperate

- IAD learns from SID about vulnerabilities that should be fixed
- SID tries out their techniques against SID-protected systems
- There's an obvious tension here...

SIGINT is Traditional

- Clear, sophisticated descriptions of cryptanalysis in a 14th century Arabic book, implying a long history of practicing it.
- During the Renaissance, major European governments had "Black Chambers"—organizations that would intercept diplomats' mail, cryptanalyze them, and reseal the messages with forged seals
- (This implies that countries also had people devising codes)
- King Philip of Spain complained that King Henry of France must be using black magic to read his codes, since there was no other way they could be broken
- The pope did nothing, since his own Black Chamber had also broken the Spanish codes, without resorting to the supernatural...


SIGINT Continued in Importance

- Britain was the hub of the 19th century international telegraph network
- They used this to intercept other countries' messages
- Their own messages went via the "all red route": telegraph lines that only came ashore somewhere in the British Empire

The American Black Chamber

- The US did little of this, but learned rapidly during World War I
- Herbert Yardley, with money from the State Department and the War Department, created the post-war *American Black Chamber*; among other things, it spied on delegates' traffic during the 1921 Naval Disarmament Conference, with particular focus on Japan
- In 1929, new Secretary of State Henry Stimson declared "Gentlemen do not read each other's mail" and shut down the operation
- (Other countries didn't have the same attitude...)
- The military continued its SIGINT activities, including (during the 1930s) Japanese diplomatic traffic

Post-War SIGINT

- After World War II, there was the Cold War
- The US (mostly) abandoned its traditional isolationist policies, and did not disband its intelligence agencies
- In 1952, all SIGINT and cryptologic activity was moved to a new (and then-classified) organization: the NSA

Enter the Computer

- The NSA has always used computers for SIGINT
- The Army and Navy used standard and customized punch card equipment for cryptanalysis, starting around 1930
- During the 1950s and 1960s, the NSA was a major force behind the development of high-end computer technology
- Probably by 1965, they started using using computers to do cryptography (my opinion)
- Started developing bit-oriented ciphers no later than that (ditto)
- The NSA evaluated—and may have helped with and/or tampered with—the development of the Data Encryption Standard in 1976
- In the late 1970s, they started developing computer security standards

The Reality of Espionage

- Nations spy. They always have, and always will. Espionage will end some time well after a sustained outbreak of world peace.
- (Stimson's attitude was highly anomalous, and his attitude was only possible in a large, geographically isolated country with no nearby strong enemies)
- So why were Snowden's revelations so surprising?
- Scale, targets, and techniques

Scale

- The NSA is spying on far more targets than had been realized
- They're spying in far more ways than had been realized
- There were no major technical surprises—everything they've been revealed as doing had been seen as plausible—but their scale of operations was a surprise.

Targets

- Allies (e.g., German Chancellor Angela Merkle)
- Most Americans (or at least their metadata)
- Private companies (or their users' traffic), including American companies
- Diplomats at the London G20 summit (shades of Yardley!)

Techniques

- Hacking computers
- Sabotaging cryptologic standards
- Physically tampering with equipment shipments to selected targets
- Bribing companies to install "back doors"

Scale According to Rumor

- They're tapping large numbers of cables—apparently, even undersea fibers (US attack submarines, notably the USS Jimmy Carter, have long been believed to have that ability)
- Rumor has it that they listen to every phone call and every Internet connection, world-wide
- They have databases with all metadata information on all US phone calls. (Is that even legal?)
- They have partnerships with intelligence agencies in many other countries, notably the "Five Eyes" countries (US, UK, Canada, Australia, New Zealand), Israel, and many NATO countries

Scale: Reality Check

- Even the NSA can't listen to everything
- There's a *lot* of undersea fiber: http://www.submarinecablemap.com
- Processing voice takes too much CPU power—how do you plant that many computers (and their power lines!) under the sea?
- If they want to relay it all back to Fort Meade, they need a tremendous amount of fiber of their own
- The same is true for Internet traffic—and much, like Netflix and much of YouTube, just isn't interesting to them
- One of their hardest problems is figuring out what's interesting
- That said, they seem to pick up an awful lot

How Much Do They Intercept?

- According to outside estimates (guesses), they pick up less than $\frac{1}{1000}$ of traffic
- They then select less than $\frac{1}{1000}$ of that
- They probably use metadata to decide what content to grab
- (Most of us just aren't that interesting...)
- Very little of what is collected is actually useful

Is This Legal?

- Spying is not against international law
- Generally speaking, the NSA is not allowed to operate within the US
- But what about the metadata database (about 37% of Americans' calls)?

FISA: The Foreign Intelligence Surveillance Act

- For purely criminal cases, a warrant or other court order is necessary for wiretapping, getting metadata, etc.
- For foreign intelligence operations, it's considered a military function, under direction of the Commander-in-Chief; no warrants are needed
- But what about a foreign intelligence operation *within the US*? In particular, what about NSA collecting information about a "US person"?
- That is governed by FISA. A special (and secret) court can issue FISA warrants permitting such activities

Section 215

- Section 215 of the PATRIOT Act authorized access to "business records" for terrorism investigations
- The FISA court issued a (secret) order permitting bulk collection: metadata for all calls, from all carriers
- Note well: this did not include content. Also remember that under the law, metadata is only very lightly protected
- Members of the House and Senate Intelligence Committees knew that §215 was being used that way, but that was classified; most people did not know. Some Senators did warn that controversial things were happening.
- Conclusion: the NSA (mostly) acted within the scope of proper legal authorization, but the legality of those court orders has been challenged.

Section 702

- Section 702 of the FISA Amendments Act permitted "targeting" warrants
- Pick up traffic *about* a subject, if one end of the communication is abroad
 - (The NSA appears to go to considerable effort to ensure that that requirement is met)

Targets

- That the NSA spies on, e.g., China or Iran isn't odd
- That it spies on NATO allies is rather more surprising
- They apparently gave GCHQ (the British equivalent of NSA) data on Britons; GCHQ couldn't legally monitor them itself
- They apparently listened in on the internal backbone nets of Google, Yahoo, etc. (Claims that this was done with the cooperation of those companies appear to be incorrect.)
- There has apparently been some economic espionage, but allegedly only to detect misbehavior (e.g., bribery or spying) by the target companies
- There seems to be a lot of "preparing the battlefield"—planting back doors in routers, computers, etc., against future need

Techniques

- Large-scale monitoring of major Internet links (but that's more or less their main job anyway)
- Cryptanalysis—but how much they can actually do is still unclear. Bruce Schneir has said "the math is still secure", but they can and do exploit implementation flaws
- Even for stuff they can break, the attack isn't free
- Hacking—they're *very* good at it
- New information suggests that they're worried that Iran has learned attack techniques from Stuxnet
- Sabotaging standards
- Bribing companies

Random Number Generator Standards

- Recall that cryptographic keys are supposed to be random numbers
- For complicated reasons, random numbers are used in other ways in cryptography; some of these values are transmitted unencrypted
- Computers are bad at randomness, so they use *pseudo-random generators* with a true-random *seed*:

static S $S \leftarrow F(S)$ return G(S)

• G should not be invertible; an attacker who sees the output of the function should not be able to recover S

DUAL_EC_DBRG

- When NIST was standardizing some pseudo-random number generators, the NSA said "use this one"
- The scheme came from IAD!
- NIST was puzzled; it seemed very slow
- The NSA said "trust us; it's necessary for national security"—but didn't say why...
- NIST figured it was harmless to include: it was so slow that no one would use it
- Allegedly, though, the NSA paid RSA to make it the default in their popular BSAFE package
- BSAFE is heavily used for cryptography in embedded systems, including on-board encryptors for network cards

A Clever Design

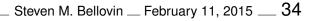
- An invertible PRNG would be too dangerous; anyone else could read traffic
- DUAL_EC_DBRG is more clever than that: it's effectively a public key encryption system, and only the NSA knows the decryption key K'
- Result: the NSA can invert *G*; no one else can
- The possibility was detected by outsiders, but it didn't draw much attention until the Snowden revelations confirmed it

The Results

- There have been many calls for reform of the NSA, and at least three different official investigations
- The NSA has changed some of its procedures, but no bills have made it through Congress yet
- It was the 1971 discovery of illegal FBI spying on the anti-Vietnam War movement that led to the passage of FISA—and that discovery was the result of illegal activity, too... (For details, read Medsger's *The Burglary* and watch the new documentary *1971*.)

International Reprecussions

- Some US allies are very, very annoyed
- Some countries are moving their data out of the US—but ironically, this may make them more vulnerable to the NSA, since the data is now abroad: no FISA warrant needed
- It has cost the US the moral high ground when it complains about China spying on US companies.


Computers Are Heavily Involved

- The scale would not be possible without computers
- Most of the exploits involve computers
- (The entire leadership of the NSA has a cyber background—that's where their energy is)
- But Snowden couldn't have taken as much if the records were all on paper (though 45 years ago, Daniel Ellsberg took a lot of paper documents)

What Do We Do?

- There are deep philosophical tradeoffs here: personal privacy versus national security; treatment of US persons versus everyone else; how to provide oversight of and accountability for a secret agency, how to treat (and how much to trust) allies, and more
- In intelligence, most sources and methods are very fragile; an enemy can move away from compromised schemes much more easily than the NSA can break new ones
- It's a hard area for Congress to control, partly because of secrecy but also because it's a very technical field
- Unless you reject the very concept of SIGINT, it's a very hard question

