
Risks of Computers: What do we
Do?

Steven M. Bellovin April 19, 2015 1

We Have Problems. . .

• Software is buggy

• It takes too long to develop

• It’s generally over budget

• What do we do?

Steven M. Bellovin April 19, 2015 2

Custom Systems

• Even the big vendors of mass market software have such problems

• A lot of organizations rely on custom systems

• Custom system designs are frequently worse

Steven M. Bellovin April 19, 2015 3

Conversions

• Different programs

• Different file formats

• Different processes

• Different things to back up

• Different inputs and outputs

• Repeat for each program in your system

Steven M. Bellovin April 19, 2015 4

We’re Dealing with Systems

• The hard part isn’t one program on one machine

• Generally, it’s many different programs

• They all interact

• “You can’t eat just one peanut”

Steven M. Bellovin April 19, 2015 5

The Bloomberg Crash

• The Bloomberg data terminal system—relied on by financial
personnel around the world—was down for several hours on Friday

• “‘Bloomberg connects 100 percent of the Street, and all that human
intelligence is what makes markets hum’” (NY Times)

• The “problem was caused by ‘a combination of hardware and
software failures,’ accompanied by failure in the company’s ‘multiple
redundant systems.’”

• “[T]he trader said: ‘Problems? Simple: No prices. Nothing. So you
can’t do anything at all.’”

• “[O]ther traders said they depended on Bloomberg chat so heavily
that they weren’t able to easily reach out to clients through other
means.”

Steven M. Bellovin April 19, 2015 6

Lessons

• Multiple components failed

• Almost certainly, there was a strange interaction or a sequence that
wasn’t anticipated

• Total reliance on one platform

• No usable backup system

Steven M. Bellovin April 19, 2015 7

A Tale of Two Airlines. . .

• WestJet and JetBlue wanted to switch to new, more capable
reservations systems

• They independently selected the same new system

• WestJet went first

• “Despite months of planning . . . its Web site crashed repeatedly and
its call center was overwhelmed. It took months to resolve all the
issues.” (WSJ, 12 Apr 2010)

Steven M. Bellovin April 19, 2015 8

Why?

• Massive data conversion: 840,000 files for existing reservations

• Too much complex hand-processing to convert files

• Too many passengers with reservations, despite the preemptive
cancelation of some flights

• For competitive reasons, they didn’t announce the conversion until
that day

Steven M. Bellovin April 19, 2015 9

Recovery

• Apology letters

• Flight credits

• Outsourced temporary call center

• A “three- to six-month recovery process”

Steven M. Bellovin April 19, 2015 10

JetBlue Went Second

• They picked a light-traffic weekend

• They kept their planes abnormally empty

• They developed and deployed a backup web server (it was needed
twice)

• They hired 500 temporary agents to handle routine calls, while their
own, experienced staff handled complex situations

• The extra agents stayed for two months—“one of the wisest
investments we made”

• There were still a few problems

Steven M. Bellovin April 19, 2015 11

The Differences

• Lighter load (though JetBlue is a bigger airline)

• Backup systems

• Personnel who were trained for conversion glitches

Steven M. Bellovin April 19, 2015 12

What Wasn’t a Problem

• For the most part, this did not involve new software development

• They were switching to an existing, well-tested product

• (There was undoubtedly some custom software written, both for the
conversion and for customization)

• JetBlue spent $40M—$25M in capital costs and $15M in one-time
operating expenses

• The problem was conversion

Steven M. Bellovin April 19, 2015 13

Conversion Principles

• Conversions never go smoothly

• If possible, run old and new systems in parallel for a while

• Lighten load

• Automate as much of the data conversion as possible

• Train people for the effort

• Temporarily shed non-essential features

Steven M. Bellovin April 19, 2015 14

Conversions are Still Hard

• When United and Continental merged, they had serious computer
problems 20 months after the merger, and two months after the new
system went live

• “Delta, which acquired Northwest in 2008, integrated its various
computer systems in stages, a process that went relatively smoothly.
United elected to tackle a bunch of integration tasks all at once.”

Steven M. Bellovin April 19, 2015 15

Why is This a Societal Issue?

• When large-scale—or governmental—systems are converted, the
public at large is converted

• It costs money and poor service—and we all pay

• Too often, the conversions are postponed or mismanaged

Steven M. Bellovin April 19, 2015 16

The FBI

• The FBI’s computer systems were old

• As of 2002, their network ran “bisync”, a protocol that was obsolete by
1980

• (They had to buy spare parts on eBay!)

• The Trilogy project, the attempt to upgrade, was an unmitigated
disaster

Steven M. Bellovin April 19, 2015 17

What the FBI Did Wrong

• No user involvement—they didn’t know what they wanted the system
to do

• Requirements change—post-9/11, they realized they needed much
more support for intelligence work

• No prototyping

• Inadequate IT management ability

• Plans for a flash cut

Steven M. Bellovin April 19, 2015 18

The IRS Has Problems, Too

• Some of their systems are more than 40 years old, and are written in
IBM mainframe assembler language

• They spent $3 billion trying—and failing—to upgrade their systems in
the 1990s

• The problem: “inadequate management, ill-defined goals, repeated
cost overruns, and failure to meet deadlines and expectations.”
(CNET News)

Steven M. Bellovin April 19, 2015 19

Autonomous Systems (“Robots”)

• Autonomous systems are now getting a lot of attention

• They all run on software

• Many will interact with each other

• What is likely to happen?

Steven M. Bellovin April 19, 2015 20

Predictions

• Utterly certain: there will be bugs in the software

• Utterly certain: the devices will sometimes encounter situations that
weren’t anticipated

• How about: a drone and a guy in a flying lawn chair
(http://en.wikipedia.org/wiki/Larry_Walters)?

• Or a self-driving car fording a stream
(http://en.wikipedia.org/wiki/File:
Ogle_County_IL_White_Pines_State_Park_Fords3.jpg)?

• What if a strange situation triggers a software bug?

Steven M. Bellovin April 19, 2015 21

http://en.wikipedia.org/wiki/Larry_Walters
http://en.wikipedia.org/wiki/File:Ogle_County_IL_White_Pines_State_Park_Fords3.jpg
http://en.wikipedia.org/wiki/File:Ogle_County_IL_White_Pines_State_Park_Fords3.jpg

What About Safety?

• Often, the autonomous options will be safer statistically

• Robots don’t drink, get distracted (though their CPUs can be
overloaded), fall asleep, etc.

• (The Apollo 11 landing was almost aborted because of a CPU
overload:
https://www.hq.nasa.gov/alsj/a11/a11.1201-fm.html)

• However—it is quite likely that there will also be some accidents that
a human would have avoided

• We can’t point to specific accidents avoided—but we can point to
specific crashes

Steven M. Bellovin April 19, 2015 22

https://www.hq.nasa.gov/alsj/a11/a11.1201-fm.html

What is the Right Tradeoff?

• How should this question be approached?

• The only people who deal with things like this statistically are
insurance actuaries

• We can try to make the systems failsafe—but it’s not likely we’ll
always succeed

• Should such systems be deployed? How should the consequent
tragedies be handled?

Steven M. Bellovin April 19, 2015 23

Requirements for Successful Software

• Clear goals

• A clean architecture

• Very good management

• Enough time

• A deployment plan

• A plan to cope with partial or total failures

• Don’t leave people out of your planning

Steven M. Bellovin April 19, 2015 24

Goals

• Meet the real needs of the organization

• Establish the goals up front, and don’t keep changing them

• Have the political fight up front, before you spend money on software

Steven M. Bellovin April 19, 2015 25

Architecure

• All that stuff you’ve learned about software engineering really helps

• Remember that needs—and hence software—will change over time

• Clean system designs will smooth that process, too

Steven M. Bellovin April 19, 2015 26

Deployment Plans

• Assume that things will go wrong

• Plan for this—how will you cope?

• If you’re running old and new systems in parallel, what if they
disagree?

• How do you share data between different versions?

Steven M. Bellovin April 19, 2015 27

Process Matters

• People are part of the system, too

• In understanding the functions and security of a system, it is
important to understand what people do

• People are also much more flexible in coping with mistakes—if the
process lets them

• In some sense, “process” is the way you program the people. . .

Steven M. Bellovin April 19, 2015 28

Large Software Systems

• Be afraid. Be very afraid.

• It never works well at first

• But there’s “bad” and “worse”

• Expect this and plan for it

Steven M. Bellovin April 19, 2015 29

