
Risks of Computers

Steven M. Bellovin April 6, 2010 1



“Anything that can go wrong, will.”

As in so many other things, computers intensify the effect. . .

Steven M. Bellovin April 6, 2010 2



Why

• Speed

• Complexity

• Access

• Arrogance

• Excessive trust

Steven M. Bellovin April 6, 2010 3



Speed

• Today, things can go wrong at multigigahertz speeds

• Multicore makes them go wrong even faster

• Often too fast for human review or intervention

Steven M. Bellovin April 6, 2010 4



Complexity

• We generally do not have full understanding of our systems

• There are often unforeseen interactions

• It is rarely possible to test thoroughly

Steven M. Bellovin April 6, 2010 5



Access

• Many people have remote access to online machines (i.e., most of
them), far more than would have access to corresponding
non-computerized systems

• Often, the access is not intended by the designers. . .

• There are often inadquate logs

Steven M. Bellovin April 6, 2010 6



Arrogance

• Designers and programmers think they can build arbitrarily complex
— but correct — systems

• They also think they can do it on time and under budget

• Purchasers believe them

Steven M. Bellovin April 6, 2010 7



Trust

• People trust computer output

• “Garbage in, gospel out”

Steven M. Bellovin April 6, 2010 8



Interactions

• Programs interact internally

• Systems of programs interact with each other

• Programs interact with users

• Programs interact with the environment

• All of these interactions interact with each other!

Steven M. Bellovin April 6, 2010 9



Users

• Users do strange things, things unanticipated by the designer

• There may be surrounding features unknown to the designer, different
styles of operation, etc.

• There are often subtle timing issues

Steven M. Bellovin April 6, 2010 10



The Environment

• Differences in OS version, configuration, etc., are problematic

• Physical interactions — RF energy, cosmic rays, alpha particles,
voltage fluctuations — can lead to failures

• Unanticipated constraints — RAM size, CPU speed, free disk space,
etc. — can cause trouble

Steven M. Bellovin April 6, 2010 11



Error Handling

• Programmers often do a poor job handling errors

• “That can’t happen”. . .

• Is it detected? What is the response? To panic? To die a horrible
death? To recover?

• How do you test, especially if it’s a hardware failure indication

• Sometimes, misbehaving hardware really misbehaves

Steven M. Bellovin April 6, 2010 12



NJ Transit: It Should Look Like This

Steven M. Bellovin April 6, 2010 13



Recently, I Saw This. . .

Steven M. Bellovin April 6, 2010 14



Bugs Happen

• It’s hard to test for all possible failure conditions

• Many problems are caused by combinations of bugs

• Complex systems fail for complex reasons

Steven M. Bellovin April 6, 2010 15



Example: 2003 Northeast Blackout

• Multiple causes!

• The operators didn’t fully understand their system

• The monitoring computers failed

• Power lines failed — and as some failed, other had to carry more of
the load, so they heated up and sagged.

• It was a warm day and the wind died, so there was less cooling; this
made them sag more — until one touched a tree

• Poor real-time data caused a cascade. . .

Steven M. Bellovin April 6, 2010 16



The Computer Failure

• The primary alarm server failed, because the alarm application failed
and/or because of too much data queued for remote terminals

• The system properly failed over to the backup server

• But — the alarm application moved its data to the backup server, so it
crashed, too. . .

Steven M. Bellovin April 6, 2010 17



Reliability is Hard

• Sometimes, critical systems are engineered for robustness

• Adding such features adds complexity

• This in turn can cause other kinds of failures

Steven M. Bellovin April 6, 2010 18



Example: the Space Shuttle

• The shuttle had four identical computers for hardware reliability, plus
another running different code

• The four were designed to have no single point of failure — which
meant that they couldn’t share any hardware

• A voting circuit matched the outputs of the primary computers; the
crew could manually switch to the backup computers

• But — a common clock would violate the “no single point of failure
rule”. . .

Steven M. Bellovin April 6, 2010 19



What Time is It?

• In a hard real-time system like space shuttle avionics, something will
always happen very soon

• Take the value of the first element in the timer queue as “now”

• However, there must be a special case for system initialization, when
the queue is empty

• A change to a bus initialization routine meant that 1/67 of the time,
the queue wouldn’t be empty during certain crucial boot-time
processing

• This in turn made it impossible for the back-up computer to
synchronize with the four primaries

• They scrubbed the very first launch, before a world-wide live TV
audience, due to a software glitch

Steven M. Bellovin April 6, 2010 20



Example: the Phone System

• In January 1990, a processor on an AT&T phone switch failed

• During recovery, the switch took itself out of service

• When it came back up, it announced its status, which triggered a bug
in neighboring switches’ processors

• If those processors received two call attempts within 1/100th of a
second, they’d crash, causing a switch to the backup processor

• If the backup received two quick call attempts, it would crash

• When those processors rebooted, they’d announce that to their
neighbors. . .

• The root cause: a misplaced break statement

• The failure was a systems failure
Steven M. Bellovin April 6, 2010 21



N-Version Programming

• Common assumption: have different programmers write independent
versions; overall reliability should increase

• But — bugs are correlated

• Sometimes, the specification is faulty

• Other times, common misperceptions or misunderstandings will
cause different programmers to make the same mistake

Steven M. Bellovin April 6, 2010 22



Achieving Reliability

• All that said, there are some very reliable systems

• Indeed, the space shuttle’s software has been widely praised

• The phone system almost always works (though of course not
always)

• How?

Steven M. Bellovin April 6, 2010 23



The Phone System

• A 1996 study showed four roughly-equal causes of phone switch
outage: hardware error, software error, operator error, and
miscellaneous

• The hardware was already ultrareliable — how did they get the
software failure rate that low?

• A lot of hard work and good design — which is reflected in the
wording of the question

Steven M. Bellovin April 6, 2010 24



Switch Design

• Primary goal: keep the switch working at all times

• No single call is important

• If anything appears wrong with a call, blow it away

• The caller will mutter, but retry — and the state in the phone switch
will be so different that the retry will succeed

• Plus — lots of error-checking, roll-back, restart, etc.

• All of this is hideously expensive

Steven M. Bellovin April 6, 2010 25



Conclusion

• We are building — and relying on — increasingly complex systems

• We do not always understand the interactions

• The very best systems are very, very expensive — and even they fail
on occasion

Steven M. Bellovin April 6, 2010 26


