
Distributed Operating Systems

Distributed
Operating Systems

Distributed
Operating Systems

Types of Distributed
Computes

Multiprocessors

Memory
Architecture
Non-Uniform
Memory
Architecture
Threads and
Multiprocessors

Multicomputers

Network I/O

Remote Procedure
Calls

Distributed Systems

Distributed File
Systems

1 / 42



Distributed Operating Systems

Distributed
Operating Systems

Distributed
Operating Systems

Types of Distributed
Computes

Multiprocessors

Memory
Architecture
Non-Uniform
Memory
Architecture
Threads and
Multiprocessors

Multicomputers

Network I/O

Remote Procedure
Calls

Distributed Systems

Distributed File
Systems

2 / 42

■ Not all operating systems are on a single CPU
■ The nature of the distribution varies widely
■ Thus, so do the possible solutions
■ Let’s look at such computers, and in particular

what they do to OS design
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■ Multiprocessors
■ Multicomputers
■ Distributed systems (and the Global Grid)
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■ We’ve been encountering them all semester
■ Multiple CPUs on a single bus
■ Current trend in chip and system design
■ Cause of great complexity all throughout the

system
■ Primary effect: true concurrency; need Test

and Set Lock instruction
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■ Primarily shared memory — low-latency
(nanoseconds) access to all of RAM from all
CPUs

■ But — limit is probably about 128 CPUs, due
to bus contention (yes, that number will go
up. . . )

■ Solutions: caching and private memory
■ Access to private memory doesn’t cause bus

contention
■ But — what do you put there?
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■ Linux supports multiple types of memory
■ Good OS, compiler, and application design can

use this well
■ Example: put stack and program in private

memory; heap can be split
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■ Should threads from the same process use the
same CPU?

■ No perfect answer!
■ Yes — avoid cache and TLB flushes
■ No — avoid latency after messages (or

equivalent) from one thread to another
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■ Many independent computers connected by a
switching fabric

■ Memory is not shared
■ No bus contention
■ Contention for switching fabric
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■ Switch for every input/output pair
■ Non-blocking — every possible conversation

can happy simultaneously
■ Needs n2 interconections — only scales to a

certain point
■ (Classic telephone switch design)
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■ Many other types of switching fabrics
■ Goals include lower cost, more scalability, etc.
■ Some have contention — see below
■ Basic goal: communication time on the order

of microseconds
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■ Operating system code must be replicated
■ No shared memory between CPUs for data

structures or locks
■ No shared memory between CPUs for threads
■ Conclusion: threads live on a single CPU (well,

maybe)
■ Hard to move processes
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■ We don’t have shared memory, but we can
fake it with Distributed Shared Memory

■ Make shared pages write-protected on each
CPU

■ When a process (or the OS) tries to write to
such a page, a protection fault occurs

■ Tell the other CPUs the page is locked for
write, and make it writable

■ Later, copy that page to the other CPUs
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■ This is the same sort of copy-on-write that we
use after a fork()

■ Also similar to some caches
■ Other CPUs can make the page unreadable

until they get a new copy
■ Alternatively, leave it readable elsewhere — no

guarantees of synchronization without locks
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■ This scheme presumes locking on a page basis
■ Application programs normally lock based on

their own data structures
■ What if these structures are much bigger? Or

much smaller?
■ What if there are several independently-locked

structures in a single page?
■ Must make this visible to the user (or at least

to the compiler
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■ What are the properties of this network?
■ How fast is it? How fast is it relative to a disk?
■ What is the overhead for starting a

transmission?
■ Is contention possible? Who handles it?
■ If contention is possible, do we need some sort

of fair scheduling algorithm?
■ Which CPU decides?
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Consider a normal network transmission:

1. User to kernel
2. Kernel to interface
3. Interface to interface
4. Interface to kernel
5. Kernel to user

Five copies, four involving RAM!
Can we do direct I/O to user space? Possible, but
it’s not easy
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■ All the usual problems of direct I/O: DMA to
virtual addresses, locking pages in memory, etc.

■ More complex here — data can arrive
asynchronously, too

■ How does user program start a transmission?
Realize one has finished? System calls and I/O
interrupts are expensive
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■ User process specifies a receiver and allocate
two memory areas, one for input and one for
output

■ Each area contains several buffers, arranged in
a ring, plus a control section

■ To write a messaege, copy it to a free buffer
and set its “buffer busy” flag

■ The network interface then transmits it; when
through, it clears the “busy” flag

■ The same thing happens on receive
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■ In that scheme, the data is generally copied
from the CPU’s memory to the board’s
memory

■ Why not have board transmit/receive from
CPU memory?

■ Bus contention — need buffering anyway, in
case the board can’t get to RAM

■ Why not map board memory directly to user
space?

■ Often possible, but might tie up board’s
memory bus
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■ All network I/O — and for that matter, all
high-speed I/O of any type — has such issues

■ Why do we focus on it here?
■ Much higher bandwidth interface; besides,

we’re trying to run it like a single computer
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■ Direct I/O is still I/O
■ That is, the programmer has to treat it as I/O
■ Can we avoid that?
■ Yes — with remote procedure calls (RPC)
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■ Appears to the programmer as an ordinary
function call

■ Under the hood, the arguments are copied
over the network

■ Results are copied back to the caller
■ It looks exactly like an ordinary procedure call,

only slower
■ Well, not really. . .
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■ Procedure arguments from the caller have to
be marshaled

■ Marshaling converts the arguments to a linear
format, perhaps with type information, for
transmission across the network

■ The same is done with any results
■ Pointers are more difficult. The marshaling

routine dereferences the pointer, sends that
value across the network, and on return copies
the new value into the pointed-to variable

■ But what if it’s pointing to a complex data
structure?
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■ The programmer has to specify which routines
are remote

■ A preprocessor generates stub routines on each
side — on the caller’s side, they’re just
subroutines that do network I/O; on the
procedure side, they’re network listeners that
call the actual procedures

■ Somewhere, network addressing information
has to be supplied



Distributed Systems

Distributed
Operating Systems

Multicomputers

Network I/O

Remote Procedure
Calls

Distributed Systems

Distributed Systems

The Start of Sun
Microsystems

Challenges

Latency

Network Reliability

Design for
Unreliability

Locking

Bandwidth
Effects of
Bandwidth Limits

Security

Cryptography and
the Distributed OS
Non-Root
Permissions

Capabilities

Distributed File
Systems

26 / 42

■ We’re not restricted to a bus or a limited area,
dedicated switch

■ We can build a distributed system on any
networking technology at all

■ That includes the Internet
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■ “Sun” stood for Stanford University Network

■ Typical deployments involved a group of
diskless workstations connected to a disk
server via an Ethernet

■ Each machine ran a separate copy of Unix
■ But in many ways, the network was designed

to act as a single distributed computer
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■ Latency
■ Network reliability
■ Locking
■ Bandwidth
■ Security
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■ Latency is much higher – hundreds of
microseconds

■ (Early networks had millisecond latency)
■ Distributed shared memory performs more

poorly
■ Effect of higher latency is pervasive



Network Reliability

Distributed
Operating Systems

Multicomputers

Network I/O

Remote Procedure
Calls

Distributed Systems

Distributed Systems

The Start of Sun
Microsystems

Challenges

Latency

Network Reliability

Design for
Unreliability

Locking

Bandwidth
Effects of
Bandwidth Limits

Security

Cryptography and
the Distributed OS
Non-Root
Permissions

Capabilities

Distributed File
Systems

30 / 42

■ Is the network functioning?
■ Will all messages be delivered?
■ Generally must assume that the network is not

reliable
■ Any desired reliability must be provided by the

host — and the OS
■ For that matter, are remote computers

reliable?
■ What if they crash or are rebooted?
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■ Every distributed system operation can fail
■ Every distributed system operation can take a

long time
■ Every distributed system operation requires a

timeout or other “liveness” check
■ The distribution is visible to the application,

whether it’s explicit I/O, remote procedure
calls, or distributed shared memory

■ Applications must be aware of these issues and
be prepared to cope
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■ How do you lock a resource globally?
■ Is one machine a lock manager? Which one?
■ What if the lock manager crashes?
■ Principle: the machine that owns the resource

owns the locks for it
■ (What about dual-ported disks?)
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■ A LAN isn’t as fast as a small-scale switch
■ It can’t be, because of the inherently higher

latency
■ The speed of light in fiber is 20

cm/nanosecond
■ The TCP throughput equation shows that

maximum bandwidth is inversely proportional
to latency

B ≤ C ·
S

R
√

p

where B is bandwidth, C is a constant, S is
packet size, R is round trip time, and p is
packet loss probability
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■ Networked disk I/O speed is limited
■ Another reason why distributed shared memory

doesn’t work well — too much latency on
certain memory references (design principle:
actions that are expensive should appear
different to the programmer)
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■ How do we trust machines across a network?
■ How do we enforce file permissions?
■ How do we identify users?
■ Use cryptography



Cryptography and the Distributed OS

Distributed
Operating Systems

Multicomputers

Network I/O

Remote Procedure
Calls

Distributed Systems

Distributed Systems

The Start of Sun
Microsystems

Challenges

Latency

Network Reliability

Design for
Unreliability

Locking

Bandwidth
Effects of
Bandwidth Limits

Security

Cryptography and
the Distributed OS
Non-Root
Permissions

Capabilities

Distributed File
Systems

36 / 42

■ Cryptography can be used for confidentiality,
which is good

■ More important, cryptography can be used for
integrity and authenticity, which are often
more important

■ Suppose root on machine A has a key KA

■ A message integrity-protected with KA could
only have come from root on A



Non-Root Permissions

Distributed
Operating Systems

Multicomputers

Network I/O

Remote Procedure
Calls

Distributed Systems

Distributed Systems

The Start of Sun
Microsystems

Challenges

Latency

Network Reliability

Design for
Unreliability

Locking

Bandwidth
Effects of
Bandwidth Limits

Security

Cryptography and
the Distributed OS
Non-Root
Permissions

Capabilities

Distributed File
Systems

37 / 42

■ Let each machine’s root attach the actual
userid to a message

■ Prepare a message “Root says that smb says
. . . ”

■ Integrity-protect it with KA; the receiving
machine can believe it, and apply smb’s
permissions

■ (Cryptographic reality is far more complex)
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■ Instead of passing around userids, use
capabilities

■ The OS prepares a list of access rights,
cryptographically seals it, and gives it to the
user process

■ The user process can employ it locally or send
it across the network

■ File permission-checking can be much simpler
— is access to that file in the user’s capability
set?

■ (But how are capabilities revoked?)
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■ How do we build a distributed file system?
■ Naming
■ Security
■ Performance
■ Consistency
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■ Must have a uniform naming convention
■ Does the name include the location of the file?

If not, how do we find it?
■ Must have a (distributed) name service
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■ Especially if a file is far away, don’t want to
retrieve each block from the network one at a
time

■ Cache it — make a local copy
■ Especially good for things like shared

executables
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■ Suppose that machines A and B open a file
simultaneously

■ If A writes to the file, does B see the change?
If so, when?

■ What if A has a cached copy?
■ Usual answer is session semantics: changes are

only pushed out when the file is closed
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