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File Permissions

■ Besides user authentication, the most visible aspect of OS security
■ Read protection — provide confidentiality
■ Write protection — provide integrity protection
■ Other permissions as well
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What Do We Protect?

■ Most obvious — files
■ That can be done in non-hierarchical file systems
■ In hierarchical file systems, must protect directories, too
■ Often, other things protected via similar mechanisms, such as shared memory

segments
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Classical Unix File Permissions

■ All files have “owners”
■ All files belong to a “group”
■ Users, when logged in, have one userid and several groupids.
■ 3 sets of 3 bits: read, write, execute, for user, group, other
■ (512 possible settings. Do they all make sense?)
■ Written rwxrwxrwx

■ 111 101 001 (751 octal): User has read/write/exec; group has read/exec;
other has exec-only

■ Some counter-intuitive settings are very useful
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Permission-Checking Algorithm

if curr_user.uid == file.uid

check_owner_permissions();

else if curr_user.gid == file.gid

check_group_permissions();

else

check_other_permissions();

fi

Note the else clauses — if you own a file, “group” and “other” permissions
aren’t checked
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Execute Permission

■ Why is it separate from “read”?
■ To permit only execution
■ Cannot copy the file
■ Readable only by the OS, for specific purposes
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Directory Permissions

■ “write”: create a file in the directory
■ “read”: list the directory
■ “execute”: trace a path through a directory
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Example: Owner Permissions

$ id

uid=54047(smb) gid=54047(smb) groups=0(wheel),3(sys),54047(smb)

$ ls -l not me

----r--r-- 1 smb wheel 29 Sep 12 01:35 not me

$ cat not me

cat: not me: Permission denied

I own the file but don’t have read permission on it
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Example: Directory Permissions

$ ls -ld oddball

dr--r--r-- 2 smb wheel 512 Sep 12 01:36 oddball

$ ls oddball

cannot get at

$ ls -l oddball

ls: cannot_get_at: Permission denied

$ cat oddball/cannot get at

cat: oddball/cannot get at: Permission denied

I can read the directory, but not trace a path through it to
oddball/cannot get at
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Deleting Files

■ What permissions are needed to delete files?
■ On Unix, you need write permission on the parent directory
■ You can delete files that you can’t write. You can also write to files that you

can neither create nor delete
■ Other systems make this choice differently

9 / 41

When Are Permissions Checked?

■ Most of the time, permissions are checked only at file open time
■ Changing permissions on an open file usually does not block further access
■ Better for efficiency — no need to check each time
■ But for some file systems, such as NFS, file permission changes do take effect

immediately
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Access Control Lists

■ 9-bit model not always flexible enough
■ Many systems (Multics, Windows XP, Solaris, some Linux) have more general

Access Control Lists
■ ACLs are explicit lists of permissions for different parties
■ Wildcards are often used
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Sample ACL

smb.* rwx
4118-ta.* rwx
*.faculty rx
*.* x

Users “smb” and ‘4118-ta” have read/write/execute

permission. Anyone in group “faculty” can read or execute the file. Others can
only execute it.
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Order is Significant

With this ACL:

*.faculty rx
smb.* rwx
4118-ta.* rwx
*.* x

I would not have write access to the file
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Some Other Possible Permissions

Append: Append to a file, but not overwrite it
Delete: Delete file from directory

Own: Own the file; can change its permissions
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Setting File Permissions

■ Where do initial file permssions come from?
■ Who can change file permissions?
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Unix Initial File Permissions

■ Unix uses “umask” — a set of bits to turn off when a program creates a file
■ Example: if umask is 022 and a program tries to create a file with permissions

0666 (rw for user, group, and other), the actual permissions will be 0644.
■ Default system umask setting has a great effect on system file security
■ Set your own value in startup script; value inherited by child processes
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Multics Initial File Permissions

■ Directories contain “initial access control list” — values set by default for new
files

■ Common setting:
smb.faculty rw
*.sysdaemon r
*.* -

■ If group “sysdaemon” doesn’t have read permission, the file can’t be backed
up!
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Other Access Controls 18 / 41

MAC versus DAC

■ Who has the right to set file permissions?
■ Discretionary Access Control — the file owner can set permissions
■ Mandatory Access Control — only the security officer can set permissions
■ Enforce site security rules
■ Note: viruses and other malware change change DAC permissions, but not

MAC permissions
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Privileged Users

■ Root or Administrator can override file permissions
■ This is a serious security risk — there is no protection if a privileged account

has been compromised
■ There is also no protection against a rogue superuser. . .
■ Secure operating systems do not have the concept of superusers
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Complex Access Control

■ Simple user/group/other or simple ACLs don’t always suffice
■ Some situations need more complex mechanisms
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Temporal Access Control

■ Permit access only at certain times
■ Model: time-locks on bank vaults
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Implementing Temporal Access Control

■ Obvious way: add extra fields to ACL
■ Work-around: timer-based automatic job that changes ACLs dynamically
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Access Control Matrix

■ List all proceses and files in a matrix
■ Each row is a process (“subject”)
■ Each column is a file (“object”)
■ Each matrix entry is the access rights that subject has for that object
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Sample Access Control Matrix

Subjects p and q
Objects f, g, p, q
Access rights r, w, x, o

f g p q
p rwo r rwx w
q - r r rwxo
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Access Control Matrix Operations

■ System can transition from one ACM state to another
■ Primitive operations: create subject, create object; destroy subject, destroy

object; add access right; delete access right
■ Transitions are, of course, conditional
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Conditional ACM Changes

Process p wishes to give process q read access to a file f owned by p.
command grant read file(p, f, q)

if o in a[p, f ]
then

enter r into a[q, f ]
fi

end
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Safety versus Security

■ Safety is a property of the abstract system
■ Security is a property of the implementation
■ To be secure, a system must be safe and not have any access control bugs
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Undecidable Question

■ Query: given an ACM and a set of transition rules, will some access right ever
end up in some cell of the matrix?

■ Model ACM and transition rules as Turing machine
■ Machine will halt if that access right shows up in that cell
■ Will it ever halt?
■ Clearly undecidable
■ Conclusion: We can never tell if an access control system is safe

(Harrison-Ruzzo-Ullman (HRU) result)
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Virtual File System

■ Linux supports very many different file system
■ Examples: ext2 and ext3 (primary native file systems), FAT and NTFS

(Windows), CD and DVD, many more
■ Also support special file systems such as /proc
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A Common Model

■ Clearly, each file system type needs some special code — a Unix directory
looks nothing like a FAT

■ Just as clearly, we do not want everything to be different
■ Solution: the Virtual File System (VFS)
■ A common abstraction layer for all Linux file systems
■ All higher-layer functions call the file system-specific implementations of the

various VFS functions
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VFS Objects

Superblock Information about the file system itself
i-node Information about specific files

file The data itself
dentry Directory entry
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VFS Operations

■ Most file-related system calls go through the VFS layer
■ Some map directly to underlying file system; some must be emulated
■ Example: FAT file systems don’t have .., but .. still has to work in paths
■ Similarly, non-Unix file systems don’t have Unix-style permissions, but ls -l

has to say something
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Creating Ownership and Permissions

■ Where do file owner/group and permissions come from on, say, a FAT file
system?

■ Linux synthesizes them.
■ User and group come from mount options (NetBSD uses the user and group

of the mount point)
■ Permissions are synthesized from things like read-only status and the umask

specified at mount time
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Sample Operation: Lookup

■ Converts a path name to an i-node
■ Must check permissions as it goes
■ Must honor common directory entry (dentry) cache
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Dentry Cache

■ Directory lookups are very common
■ Results are cached
■ Cache validity has to be checked, in case the file was deleted, renamed,

changed, etc
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Lookup

■ Many levels of preliminary subroutines
■ The real work is in fs/namei.c: link path walk()

■ At each level, it checks the directory’s execute permission
■ Note: this is faked by lower layers for non-Unix file systems
■ This routine handles . and ..

■ As needed, it (indirectly) calls the VFS lookup routine
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Permissions

■ Primary routine: fs/namei.c:permission()
■ Looks for permission routine for this i-node (originally set via VFS)
■ If not there, calls generic permission() to check user/group/other bits
■ Then checks ACLs
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Extended Attributes

■ Actually, Linux doesn’t have ACLs per se
■ It has extended attributes for files
■ Extended attributes are name:value pairs
■ Names are qualified by namespaces, such as system.posix acl access
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Special File Systems 40 / 41

Special File Systems

■ Linux uses a variety of special file systems for various things
■ Example: /proc and sysfs provide access to system data
■ The debugger can use /proc to connect to a given process
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Implementing Special File Systems

■ At higher layers, just like real file systems
■ But — fs-specific routines consult other data structures, rather than a real disk
■ Can use Unix permissions to restrict access to some “files”
■ Example: /proc/$$/mem is the current shell’s memory; it’s typically readable

only the the owner
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