
File Permissions 1 / 41

File Permissions

■ Besides user authentication, the most visible aspect of OS security
■ Read protection — provide confidentiality
■ Write protection — provide integrity protection
■ Other permissions as well

1 / 41

What Do We Protect?

■ Most obvious — files
■ That can be done in non-hierarchical file systems
■ In hierarchical file systems, must protect directories, too
■ Often, other things protected via similar mechanisms, such as shared memory

segments

2 / 41

1



Unix File Permissions 3 / 41

Classical Unix File Permissions

■ All files have “owners”
■ All files belong to a “group”
■ Users, when logged in, have one userid and several groupids.
■ 3 sets of 3 bits: read, write, execute, for user, group, other
■ (512 possible settings. Do they all make sense?)
■ Written rwxrwxrwx

■ 111 101 001 (751 octal): User has read/write/exec; group has read/exec;
other has exec-only

■ Some counter-intuitive settings are very useful

3 / 41

Permission-Checking Algorithm

if curr_user.uid == file.uid

check_owner_permissions();

else if curr_user.gid == file.gid

check_group_permissions();

else

check_other_permissions();

fi

Note the else clauses — if you own a file, “group” and “other” permissions
aren’t checked

4 / 41

2



Execute Permission

■ Why is it separate from “read”?
■ To permit only execution
■ Cannot copy the file
■ Readable only by the OS, for specific purposes

5 / 41

Directory Permissions

■ “write”: create a file in the directory
■ “read”: list the directory
■ “execute”: trace a path through a directory

6 / 41

3



Example: Owner Permissions

$ id

uid=54047(smb) gid=54047(smb) groups=0(wheel),3(sys),54047(smb)

$ ls -l not me

----r--r-- 1 smb wheel 29 Sep 12 01:35 not me

$ cat not me

cat: not me: Permission denied

I own the file but don’t have read permission on it

7 / 41

Example: Directory Permissions

$ ls -ld oddball

dr--r--r-- 2 smb wheel 512 Sep 12 01:36 oddball

$ ls oddball

cannot get at

$ ls -l oddball

ls: cannot_get_at: Permission denied

$ cat oddball/cannot get at

cat: oddball/cannot get at: Permission denied

I can read the directory, but not trace a path through it to
oddball/cannot get at

8 / 41

4



Deleting Files

■ What permissions are needed to delete files?
■ On Unix, you need write permission on the parent directory
■ You can delete files that you can’t write. You can also write to files that you

can neither create nor delete
■ Other systems make this choice differently

9 / 41

When Are Permissions Checked?

■ Most of the time, permissions are checked only at file open time
■ Changing permissions on an open file usually does not block further access
■ Better for efficiency — no need to check each time
■ But for some file systems, such as NFS, file permission changes do take effect

immediately

10 / 41

5



Access Control Lists 11 / 41

Access Control Lists

■ 9-bit model not always flexible enough
■ Many systems (Multics, Windows XP, Solaris, some Linux) have more general

Access Control Lists
■ ACLs are explicit lists of permissions for different parties
■ Wildcards are often used

11 / 41

Sample ACL

smb.* rwx
4118-ta.* rwx
*.faculty rx
*.* x

Users “smb” and ‘4118-ta” have read/write/execute

permission. Anyone in group “faculty” can read or execute the file. Others can
only execute it.

12 / 41

6



Order is Significant

With this ACL:

*.faculty rx
smb.* rwx
4118-ta.* rwx
*.* x

I would not have write access to the file

13 / 41

Some Other Possible Permissions

Append: Append to a file, but not overwrite it
Delete: Delete file from directory

Own: Own the file; can change its permissions

14 / 41

7



Setting File Permissions

■ Where do initial file permssions come from?
■ Who can change file permissions?

15 / 41

Unix Initial File Permissions

■ Unix uses “umask” — a set of bits to turn off when a program creates a file
■ Example: if umask is 022 and a program tries to create a file with permissions

0666 (rw for user, group, and other), the actual permissions will be 0644.
■ Default system umask setting has a great effect on system file security
■ Set your own value in startup script; value inherited by child processes

16 / 41

8



Multics Initial File Permissions

■ Directories contain “initial access control list” — values set by default for new
files

■ Common setting:
smb.faculty rw
*.sysdaemon r
*.* -

■ If group “sysdaemon” doesn’t have read permission, the file can’t be backed
up!

17 / 41

Other Access Controls 18 / 41

MAC versus DAC

■ Who has the right to set file permissions?
■ Discretionary Access Control — the file owner can set permissions
■ Mandatory Access Control — only the security officer can set permissions
■ Enforce site security rules
■ Note: viruses and other malware change change DAC permissions, but not

MAC permissions

18 / 41

9



Privileged Users

■ Root or Administrator can override file permissions
■ This is a serious security risk — there is no protection if a privileged account

has been compromised
■ There is also no protection against a rogue superuser. . .
■ Secure operating systems do not have the concept of superusers

19 / 41

Complex Access Control

■ Simple user/group/other or simple ACLs don’t always suffice
■ Some situations need more complex mechanisms

20 / 41

10



Temporal Access Control

■ Permit access only at certain times
■ Model: time-locks on bank vaults

21 / 41

Implementing Temporal Access Control

■ Obvious way: add extra fields to ACL
■ Work-around: timer-based automatic job that changes ACLs dynamically

22 / 41

11



Access Control Matrices 23 / 41

Access Control Matrix

■ List all proceses and files in a matrix
■ Each row is a process (“subject”)
■ Each column is a file (“object”)
■ Each matrix entry is the access rights that subject has for that object

23 / 41

Sample Access Control Matrix

Subjects p and q
Objects f, g, p, q
Access rights r, w, x, o

f g p q
p rwo r rwx w
q - r r rwxo

24 / 41

12



Access Control Matrix Operations

■ System can transition from one ACM state to another
■ Primitive operations: create subject, create object; destroy subject, destroy

object; add access right; delete access right
■ Transitions are, of course, conditional

25 / 41

Conditional ACM Changes

Process p wishes to give process q read access to a file f owned by p.
command grant read file(p, f, q)

if o in a[p, f ]
then

enter r into a[q, f ]
fi

end

26 / 41

13



Safety versus Security

■ Safety is a property of the abstract system
■ Security is a property of the implementation
■ To be secure, a system must be safe and not have any access control bugs

27 / 41

Undecidable Question

■ Query: given an ACM and a set of transition rules, will some access right ever
end up in some cell of the matrix?

■ Model ACM and transition rules as Turing machine
■ Machine will halt if that access right shows up in that cell
■ Will it ever halt?
■ Clearly undecidable
■ Conclusion: We can never tell if an access control system is safe

(Harrison-Ruzzo-Ullman (HRU) result)

28 / 41

14



Linux File Systems 29 / 41

Virtual File System

■ Linux supports very many different file system
■ Examples: ext2 and ext3 (primary native file systems), FAT and NTFS

(Windows), CD and DVD, many more
■ Also support special file systems such as /proc

30 / 41

A Common Model

■ Clearly, each file system type needs some special code — a Unix directory
looks nothing like a FAT

■ Just as clearly, we do not want everything to be different
■ Solution: the Virtual File System (VFS)
■ A common abstraction layer for all Linux file systems
■ All higher-layer functions call the file system-specific implementations of the

various VFS functions

31 / 41

15



VFS Objects

Superblock Information about the file system itself
i-node Information about specific files

file The data itself
dentry Directory entry

32 / 41

VFS Operations

■ Most file-related system calls go through the VFS layer
■ Some map directly to underlying file system; some must be emulated
■ Example: FAT file systems don’t have .., but .. still has to work in paths
■ Similarly, non-Unix file systems don’t have Unix-style permissions, but ls -l

has to say something

33 / 41

16



Creating Ownership and Permissions

■ Where do file owner/group and permissions come from on, say, a FAT file
system?

■ Linux synthesizes them.
■ User and group come from mount options (NetBSD uses the user and group

of the mount point)
■ Permissions are synthesized from things like read-only status and the umask

specified at mount time

34 / 41

Sample Operation: Lookup

■ Converts a path name to an i-node
■ Must check permissions as it goes
■ Must honor common directory entry (dentry) cache

35 / 41

17



Dentry Cache

■ Directory lookups are very common
■ Results are cached
■ Cache validity has to be checked, in case the file was deleted, renamed,

changed, etc

36 / 41

Lookup

■ Many levels of preliminary subroutines
■ The real work is in fs/namei.c: link path walk()

■ At each level, it checks the directory’s execute permission
■ Note: this is faked by lower layers for non-Unix file systems
■ This routine handles . and ..

■ As needed, it (indirectly) calls the VFS lookup routine

37 / 41

18



Permissions

■ Primary routine: fs/namei.c:permission()
■ Looks for permission routine for this i-node (originally set via VFS)
■ If not there, calls generic permission() to check user/group/other bits
■ Then checks ACLs

38 / 41

Extended Attributes

■ Actually, Linux doesn’t have ACLs per se
■ It has extended attributes for files
■ Extended attributes are name:value pairs
■ Names are qualified by namespaces, such as system.posix acl access

39 / 41

19



Special File Systems 40 / 41

Special File Systems

■ Linux uses a variety of special file systems for various things
■ Example: /proc and sysfs provide access to system data
■ The debugger can use /proc to connect to a given process

40 / 41

Implementing Special File Systems

■ At higher layers, just like real file systems
■ But — fs-specific routines consult other data structures, rather than a real disk
■ Can use Unix permissions to restrict access to some “files”
■ Example: /proc/$$/mem is the current shell’s memory; it’s typically readable

only the the owner

41 / 41

20


	File Permissions
	File Permissions
	What Do We Protect?

	Unix File Permissions
	Classical Unix File Permissions
	Permission-Checking Algorithm
	Execute Permission
	Directory Permissions
	Example: Owner Permissions
	Example: Directory Permissions
	Deleting Files
	When Are Permissions Checked?

	Access Control Lists
	Access Control Lists
	Sample ACL
	Order is Significant
	Some Other Possible Permissions
	Setting File Permissions
	Unix Initial File Permissions
	Multics Initial File Permissions

	Other Access Controls
	MAC versus DAC
	Privileged Users
	Complex Access Control
	Temporal Access Control
	Implementing Temporal Access Control

	Access Control Matrices
	Access Control Matrix
	Sample Access Control Matrix
	Access Control Matrix Operations
	Conditional ACM Changes
	Safety versus Security
	Undecidable Question

	Linux File Systems
	Virtual File System
	A Common Model
	VFS Objects
	VFS Operations
	Creating Ownership and Permissions
	Sample Operation: Lookup
	Dentry Cache
	Lookup
	Permissions
	Extended Attributes

	Special File Systems
	Special File Systems
	Implementing Special File Systems


