
Linux Metadata

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

File Operations

File System Layout

The Windows FAT
File System

Dump/Restore

1 / 42

struct stat {
dev_t st_dev; /* device */

ino_t st_ino; /* inode */

mode_t st_mode; /* protection */

nlink_t st_nlink; /* number of hard links

uid_t st_uid; /* user ID of owner */

gid_t st_gid; /* group ID of owner */

dev_t st_rdev; /* device type (if inode

off_t st_size; /* total size, in bytes

blksize_t st_blksize; /* blocksize for filesystem

blkcnt_t st_blocks; /* number of blocks allocated

time_t st_atime; /* time of last access

time_t st_mtime; /* time of last modification

time_t st_ctime; /* time of last status

};



Where is Metadata Stored?

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

File Operations

File System Layout

The Windows FAT
File System

Dump/Restore

2 / 42

■ In the file?
■ In the directory entry?
■ Elsewhere?
■ Split?



Metadata in the File

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

File Operations

File System Layout

The Windows FAT
File System

Dump/Restore

3 / 42

■ (Sort of) done by Apple: resource and data
forks

■ Not very portable — when you copy the file
to/from other systems, what happens to the
metadata?

■ No standardized metadata exchange format



Metadata in the Directory

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

File Operations

File System Layout

The Windows FAT
File System

Dump/Restore

4 / 42

■ Speeds access to metadata
■ Makes hard links difficult — need to keep

copies of the metadata synchronized
■ Makes directories larger; often, one doesn’t

need the metadata
■ Many newer systems keep at least a few bits of

metadata in the directory, notably file type —
knowing if something is or isn’t a directory
speeds up tree walks considerably



Crash Recovery

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

Crash Recovery

Repairing Damage

Log-Structured File
Systems

Modern Disks

The Unix Filesystem

File Operations

File System Layout

The Windows FAT
File System

Dump/Restore

5 / 42

■ Must ensure that file systems are in a
consistent state after a system crash

■ Example: don’t write out directory entry
before the metadata

■ Example: File systems are generally trees, not
graphs; make sure things always point
somewhere sane

■ What if the file has blocks but the freelist
hasn’t been updated?

■ Principle: order writes to ensure that the disk
is always in a safe state



Repairing Damage

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

Crash Recovery

Repairing Damage

Log-Structured File
Systems

Modern Disks

The Unix Filesystem

File Operations

File System Layout

The Windows FAT
File System

Dump/Restore

6 / 42

■ At boot-time, run a consistency checker except
after a clean shutdown

■ Example: fsck (Unix) and scandisk

(Windows)
■ Force things to a safe state; move any

allocated but unreferenced blocks and files to a
recovery area



Log-Structured File Systems

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

Crash Recovery

Repairing Damage

Log-Structured File
Systems

Modern Disks

The Unix Filesystem

File Operations

File System Layout

The Windows FAT
File System

Dump/Restore

7 / 42

■ Instead of overwriting data, append the
changes to a journaling area

■ The file system is thus always consistent, as
long as writes are properly ordered.

■ Hmm — is that a reasonable assumption?



Modern Disks

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

Crash Recovery

Repairing Damage

Log-Structured File
Systems

Modern Disks

The Unix Filesystem

File Operations

File System Layout

The Windows FAT
File System

Dump/Restore

8 / 42

■ Modern disks do a lot of buffering
■ Cache size on new Seagate drives: 2-16M bytes
■ The drive will reorder writes to optimize seek

times
■ If a bad block has been relocated, you can’t

even predict when seeks will occur; only the
drive knows

■ What if the power fails when data is buffered?



The Unix Filesystem

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

The Unix Filesystem

From the Process

Directories

Finding a File

. and ..

I-Nodes
What’s in an
I-Node?
Disk Blocks in the
I-Node
Multiple Layers of
Indirection

File Operations

File System Layout

The Windows FAT
File System

Dump/Restore

9 / 42



The Unix Filesystem

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

The Unix Filesystem

From the Process

Directories

Finding a File

. and ..

I-Nodes
What’s in an
I-Node?
Disk Blocks in the
I-Node
Multiple Layers of
Indirection

File Operations

File System Layout

The Windows FAT
File System

Dump/Restore

10 / 42

■ Let’s take a high-level look at the Unix file
system

■ Though details differ (a lot) for, say, Windows,
at a high level things are pretty similar

■ We’ll discuss the actual code paths next time
■ Note: all modern operating systems support

multiple file system types; differences hidden
by abstraction layer.



From the Process

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

The Unix Filesystem

From the Process

Directories

Finding a File

. and ..

I-Nodes
What’s in an
I-Node?
Disk Blocks in the
I-Node
Multiple Layers of
Indirection

File Operations

File System Layout

The Windows FAT
File System

Dump/Restore

11 / 42

■ The process has two crucial directory
attributes, the current root and the current
working directory

■ Paths that start with a / (known as absolute

paths) start from the current root; those that
do not start with a / (relative paths) start
from the current working directory

■ (Roots other than the real root are a security
mechanism; we’ll discuss that later in the
semester.)



Directories

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

The Unix Filesystem

From the Process

Directories

Finding a File

. and ..

I-Nodes
What’s in an
I-Node?
Disk Blocks in the
I-Node
Multiple Layers of
Indirection

File Operations

File System Layout

The Windows FAT
File System

Dump/Restore

12 / 42

■ On some Unix systems, directories can be read
like any other file with read(); on Linux, you
must (and on other Unix systems you should)
use readdir()

■ A directory entry consists of a variable-length
name and an i-node number

■ (What’s an i-node?)
■ By convention, on most Unix systems the first

two entries in a directory are . and .. — the
current and parent directories

■ Don’t count on them being there; they’re not
guaranteed by the spec!



Finding a File

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

The Unix Filesystem

From the Process

Directories

Finding a File

. and ..

I-Nodes
What’s in an
I-Node?
Disk Blocks in the
I-Node
Multiple Layers of
Indirection

File Operations

File System Layout

The Windows FAT
File System

Dump/Restore

13 / 42

■ Find the next component in the pathname
■ Read the current directory looking for it
■ If there’s another component to the path name

and this element is a directory, repeat, starting
from this element

■ When we’re done, the result is an i-node
number



. and ..

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

The Unix Filesystem

From the Process

Directories

Finding a File

. and ..

I-Nodes
What’s in an
I-Node?
Disk Blocks in the
I-Node
Multiple Layers of
Indirection

File Operations

File System Layout

The Windows FAT
File System

Dump/Restore

14 / 42

■ Note how . and .. work
■ . has the i-node number of the current

directory — you start again from this node for
the next component

■ It’s just another directory; to (this part of) the
kernel, there’s nothing special about it

■ The same is true for .. — it “happens” to
point up a level in the directory tree.

■ Following a search path does not rely on the
directory structure being a tree! That’s
primarily needed for orderly tree walks.

■ (Mental exercise: symbolic links do introduce
the possiblity of loops. How can this be dealt
with?)



I-Nodes

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

The Unix Filesystem

From the Process

Directories

Finding a File

. and ..

I-Nodes
What’s in an
I-Node?
Disk Blocks in the
I-Node
Multiple Layers of
Indirection

File Operations

File System Layout

The Windows FAT
File System

Dump/Restore

15 / 42

■ What’s an i-node?
■ An i-node holds most of the metadata for a

Unix file — on classic Unix, it holds all but the
i-node number itself

■ The i-list is a disk-resident array i-nodes
■ The i-node number is just an index into this

array
■ Looked at another way, a directory entry maps

a name to an array entry
■ Files are actually described by i-nodes, not by

names



What’s in an I-Node?

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

The Unix Filesystem

From the Process

Directories

Finding a File

. and ..

I-Nodes
What’s in an
I-Node?
Disk Blocks in the
I-Node
Multiple Layers of
Indirection

File Operations

File System Layout

The Windows FAT
File System

Dump/Restore

16 / 42

■ All of the fields from the stat structure
■ A few other pieces of user-settable metadata

(flags)
■ Disk block information — where on disk the

file resides?
■ How many blocks is enough?
■ Put another way, how big can a file be?



Disk Blocks in the I-Node

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

The Unix Filesystem

From the Process

Directories

Finding a File

. and ..

I-Nodes
What’s in an
I-Node?
Disk Blocks in the
I-Node
Multiple Layers of
Indirection

File Operations

File System Layout

The Windows FAT
File System

Dump/Restore

17 / 42

■ If we have a small array, we limit the size of a
file too much

■ If we have a large array, we waste space in the
i-list, because most files aren’t huge

■ We have a modest-size array of block
addresses, followed by the address of an
indirect block

■ The indirect block is an array of disk addresses
■ Hmm — suppose the i-node points to ten 4K

blocks, followed by an indirect block. The
maximum size of a file is then
4096 × 10 + (4096/4) × 4096

■ That’s 4,235,264 bytes – not nearly big enough



Multiple Layers of Indirection

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

The Unix Filesystem

From the Process

Directories

Finding a File

. and ..

I-Nodes
What’s in an
I-Node?
Disk Blocks in the
I-Node
Multiple Layers of
Indirection

File Operations

File System Layout

The Windows FAT
File System

Dump/Restore

18 / 42

■ “Any problem in software can be solved by
adding another layer of indirection” —David

Wheeler

■ The second indirect block is a double indirect

block

■ That gives us 4096 × 10 + (4096/4) × 4096 +
((4096/4)×4096/4)×4096 bytes — about 4G

■ Is that enough? Some systems today have
triple indirect blocks. . .

■ Metanote: PDP-11 Unix had triple indirect
blocks; when file system blocks became 4K
(more or less), there was no need for them.
But disks and files grew bigger. . .



Opening a File

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

File Operations

Opening a File

Creating a File

Reading a File

Writing a File

Seek

Closing a File

Linking to a File

Unlinking a File

Updating Metadata

Creating Directories

Deleting Directories

Renaming

I’ve Glossed Over
Stuff

File System Layout

The Windows FAT
File System

Dump/Restore 19 / 42

■ When a file is opened, the i-node is read into
memory (if necessary) and its reference count

is incremented
■ A file table entry is created for it
■ The index in the file table is passed back to

the application as the file descriptor
■ Virtually all operating systems have this notion

— a file handle — that is a short way of
referring to an open file.

■ More complex for special files — wait a few
days



Creating a File

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

File Operations

Opening a File

Creating a File

Reading a File

Writing a File

Seek

Closing a File

Linking to a File

Unlinking a File

Updating Metadata

Creating Directories

Deleting Directories

Renaming

I’ve Glossed Over
Stuff

File System Layout

The Windows FAT
File System

Dump/Restore 20 / 42

■ See if there’s a directory entry.
■ If there is, it’s like opening a file (but you may

have to truncate it)
■ If there’s no entry, create one.
■ That involves writing to the directory, which is

a lot like writing to a regular file
■ It also involves finding and allocating a free

i-node
■ Directory entries are free if the i-node number

is 0; i-nodes are free if the link count is 0



Reading a File

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

File Operations

Opening a File

Creating a File

Reading a File

Writing a File

Seek

Closing a File

Linking to a File

Unlinking a File

Updating Metadata

Creating Directories

Deleting Directories

Renaming

I’ve Glossed Over
Stuff

File System Layout

The Windows FAT
File System

Dump/Restore 21 / 42

■ Convert the current byte offset to a block
number

■ Read that block from the disk
■ Pass the proper bytes back to the user
■ Update the current byte offset
■ Optional: if access to the file appears to be

sequential, start — but don’t wait for — the
read of the next block

■ Get it in the buffer cache ahead of use, to
improve performance



Writing a File

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

File Operations

Opening a File

Creating a File

Reading a File

Writing a File

Seek

Closing a File

Linking to a File

Unlinking a File

Updating Metadata

Creating Directories

Deleting Directories

Renaming

I’ve Glossed Over
Stuff

File System Layout

The Windows FAT
File System

Dump/Restore 22 / 42

■ Are we writing to the middle of a block?
■ If so, read that block in
■ If not, allocate a new block from the freelist

and add it to the i-node
■ Copy the data from the user to a buffer
■ Mark that buffer dirty, so that it will

(eventually) be written out
■ Update the file offset pointer



Seek

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

File Operations

Opening a File

Creating a File

Reading a File

Writing a File

Seek

Closing a File

Linking to a File

Unlinking a File

Updating Metadata

Creating Directories

Deleting Directories

Renaming

I’ve Glossed Over
Stuff

File System Layout

The Windows FAT
File System

Dump/Restore 23 / 42

■ Simply change the current byte offset
■ Does not actually move the disk arm
■ Doing that is probably pointless on a

multitasking system



Closing a File

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

File Operations

Opening a File

Creating a File

Reading a File

Writing a File

Seek

Closing a File

Linking to a File

Unlinking a File

Updating Metadata

Creating Directories

Deleting Directories

Renaming

I’ve Glossed Over
Stuff

File System Layout

The Windows FAT
File System

Dump/Restore 24 / 42

■ Decrement the i-node’s reference count
■ Delete the file table entry
■ If the i-node’s link count is 0, the file has been

deleted; see below
■ Everything else is automatic



Linking to a File

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

File Operations

Opening a File

Creating a File

Reading a File

Writing a File

Seek

Closing a File

Linking to a File

Unlinking a File

Updating Metadata

Creating Directories

Deleting Directories

Renaming

I’ve Glossed Over
Stuff

File System Layout

The Windows FAT
File System

Dump/Restore 25 / 42

■ Create a new directory entry
■ But — the i-node number is the number of the

existing file
■ Increment the i-node’s link count



Unlinking a File

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

File Operations

Opening a File

Creating a File

Reading a File

Writing a File

Seek

Closing a File

Linking to a File

Unlinking a File

Updating Metadata

Creating Directories

Deleting Directories

Renaming

I’ve Glossed Over
Stuff

File System Layout

The Windows FAT
File System

Dump/Restore 26 / 42

■ Decrement the link-count
■ If the link-count is still non-zero, the file has

other names; do nothing more
■ If the link-count is now 0 (and the in-memory

reference count is 0), the file is being deleted
■ Return all of its blocks to the free list
■ (Note: you can unlink an open file; it isn’t

actually deleted until it’s closed. Query: what
happens if the system crashes with a file in
that state?)



Updating Metadata

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

File Operations

Opening a File

Creating a File

Reading a File

Writing a File

Seek

Closing a File

Linking to a File

Unlinking a File

Updating Metadata

Creating Directories

Deleting Directories

Renaming

I’ve Glossed Over
Stuff

File System Layout

The Windows FAT
File System

Dump/Restore 27 / 42

■ When a file is read, the access time needs to
be updated

■ When a file is written, the modified time needs
to be updated

■ If the user changes things like file permissions,
make the appropriate changes

■ Mark the in-memory i-node as dirty
■ Also update the i-node change time
■ Periodically, dirty i-nodes are rewritten to disk



Creating Directories

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

File Operations

Opening a File

Creating a File

Reading a File

Writing a File

Seek

Closing a File

Linking to a File

Unlinking a File

Updating Metadata

Creating Directories

Deleting Directories

Renaming

I’ve Glossed Over
Stuff

File System Layout

The Windows FAT
File System

Dump/Restore 28 / 42

■ Similar to creating a file
■ But — the kernel first writes the . and ..

entries
■ Increment the link count in the parent

directory — .. points to it
■ (All writes to directories are done by

specialized system calls; user programs cannot
write directories directly via write() on any
modern Unix)



Deleting Directories

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

File Operations

Opening a File

Creating a File

Reading a File

Writing a File

Seek

Closing a File

Linking to a File

Unlinking a File

Updating Metadata

Creating Directories

Deleting Directories

Renaming

I’ve Glossed Over
Stuff

File System Layout

The Windows FAT
File System

Dump/Restore 29 / 42

■ First make sure the directory is empty except
for . and ..

■ Then delete it the same way a normal file is
deleted

■ But – the link count in the parent directory is
decremented

■ It’s possible to delete the current working
directory, or even its parent!



Renaming

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

File Operations

Opening a File

Creating a File

Reading a File

Writing a File

Seek

Closing a File

Linking to a File

Unlinking a File

Updating Metadata

Creating Directories

Deleting Directories

Renaming

I’ve Glossed Over
Stuff

File System Layout

The Windows FAT
File System

Dump/Restore 30 / 42

■ Create a link with the new name
■ Remove the link with the old name
■ But — it must be done in the kernel, since the

first step involves creating a hard link to a
directory



I’ve Glossed Over Stuff

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

File Operations

Opening a File

Creating a File

Reading a File

Writing a File

Seek

Closing a File

Linking to a File

Unlinking a File

Updating Metadata

Creating Directories

Deleting Directories

Renaming

I’ve Glossed Over
Stuff

File System Layout

The Windows FAT
File System

Dump/Restore 31 / 42

■ There’s a fair mount of locking going on, to
ensure consistency

■ I have not mentioned proper order of
operations to ensure file system consistency

■ There are a variety of less-important system
calls

■ File permissions
■ Special files and symbolic links



Components of a File System

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

File Operations

File System Layout

Components of a
File System

Boot Record and
Superblock

The I-List

Data Area

The Windows FAT
File System

Dump/Restore

32 / 42

■ Boot record, superblock
■ i-list
■ Freelist
■ Data area



Boot Record and Superblock

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

File Operations

File System Layout

Components of a
File System

Boot Record and
Superblock

The I-List

Data Area

The Windows FAT
File System

Dump/Restore

33 / 42

■ The boot record is at the start of the disk; it’s
used by the BIOS for booting (called the
Master Boot Record (MBR) on PCs)

■ This area also stores the disk label —
information on how the disk is partitioned

■ Next is the superblock — contains essential
file system parameters

■ Among other things: how to find the i-list; the
“clean shutdown” flag, to indicate that the file
system is believed to be in a consistent state



The I-List

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

File Operations

File System Layout

Components of a
File System

Boot Record and
Superblock

The I-List

Data Area

The Windows FAT
File System

Dump/Restore

34 / 42

■ Once, the i-list was an array of blocks just
after the superblock

■ Today, it’s distributed — a piece of the i-list is
in each cylinder group

■ A cylinder group contains a portion of the
i-list, a freelist for blocks within the cylinder
group, and a data area

■ Newly-created files get their initial block
allocations within the cylinder group; later
blocks are allocated in groups in other cylinder
groups

■ What is the purpose of cylinder groups?
■ Locality of reference — try to avoid long seeks



Data Area

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

File Operations

File System Layout

Components of a
File System

Boot Record and
Superblock

The I-List

Data Area

The Windows FAT
File System

Dump/Restore

35 / 42

■ Most of the file is allocated in blocks of 4-8K
bytes

■ Left-over pieces of the file are stored in
fragments, which are composed of 512-byte
blocks

■ Dual block size saves RAM and disk space for
large files, but doesn’t waste too much for
short files



The Windows FAT File System

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

File Operations

File System Layout

The Windows FAT
File System

The Windows FAT
File System

File Allocation Table
Supporting Long
Names

Dump/Restore

36 / 42

■ Limited-size root directory
■ 8.3 file names
■ Metadata in the directory entry
■ Directory points to FAT table entry



File Allocation Table

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

File Operations

File System Layout

The Windows FAT
File System

The Windows FAT
File System

File Allocation Table
Supporting Long
Names

Dump/Restore

37 / 42

■ The FAT keeps track of allocated blocks
■ Each entry in the FAT — on disk and in RAM

— is just a pointer to the next block
■ Implements a linked list of blocks, without the

need to read each block
■ Maximum file size limited by number of bits in

a disk block address — current is using 28-bit
addresses



Supporting Long Names

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

File Operations

File System Layout

The Windows FAT
File System

The Windows FAT
File System

File Allocation Table
Supporting Long
Names

Dump/Restore

38 / 42

■ For Windows 98, they wanted to support
longer names than 8.3 permitted

■ But — must maintain substantial name
compatibility with older versions of Windows
and DOS

■ First: use recognizable part of long name for
8.3 version

■ Second: create fake, invalid directory entries
that precede the real one

■ DOS will ignore them, because they appear
invalid

■ Have a checksum in case the real, short-name
version of the file is deleted while running DOS



Dumping a Disk

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

File Operations

File System Layout

The Windows FAT
File System

Dump/Restore

Dumping a Disk

Dump Strategies

Mapping a
Filesystem

Dumping a
Filesystem

39 / 42

■ Must have a way to dump and restore disks —
some people make backups

■ More than — we want a way to to create
incremental dumps: all files changed since the
last dump

■ Unix has multiple levels of backup: 0 is
everything; 1 is everything since the last level
1; 2 is everything since the last level 1; etc.

■ Can select files by date modified or by a
“dirty” bit

■ Some systems have a way to exclude some files
from being dump (i.e., swap files or very
sensitive files)



Dump Strategies

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

File Operations

File System Layout

The Windows FAT
File System

Dump/Restore

Dumping a Disk

Dump Strategies

Mapping a
Filesystem

Dumping a
Filesystem

40 / 42

■ Could do a physical image dump
■ Safe and simple, but wasteful — dumps empty

blocks, can’t do incremental dump, might try
to dump bad blocks, etc.

■ only restorable to disk with identical geometry
■ Instead — dump a filesystem



Mapping a Filesystem

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

File Operations

File System Layout

The Windows FAT
File System

Dump/Restore

Dumping a Disk

Dump Strategies

Mapping a
Filesystem

Dumping a
Filesystem

41 / 42

■ Must map the file system to see what files
must be dumped

■ For incremental dumps, must be able to
“dump” deletions — those are changes to the
parent directory

■ Must also dump all parent directories, up to
the root, of any dumped files

■ Dump selection is based on metadata (and
metadata must be dmped)



Dumping a Filesystem

Linux Metadata
Where is Metadata
Stored?

Metadata in the File
Metadata in the
Directory

Crash Recovery

The Unix Filesystem

File Operations

File System Layout

The Windows FAT
File System

Dump/Restore

Dumping a Disk

Dump Strategies

Mapping a
Filesystem

Dumping a
Filesystem

42 / 42

■ The actual dump can’t go through the file
system on Unix; want to avoid dumping file
system “holes”

■ The actual dump file is based on i-node
numbers, not file names; the file names are in
the dumped directories

■ Restores can be done through the file system
■ To do incremental restores, must restore each

level in sequence, to build the proper directory
structure


	Linux Metadata
	Where is Metadata Stored?
	Metadata in the File
	Metadata in the Directory
	Crash Recovery
	Crash Recovery
	Repairing Damage
	Log-Structured File Systems
	Modern Disks

	The Unix Filesystem
	The Unix Filesystem
	From the Process
	Directories
	Finding a File
	. and ..
	I-Nodes
	What's in an I-Node?
	Disk Blocks in the I-Node
	Multiple Layers of Indirection

	File Operations
	Opening a File
	Creating a File
	Reading a File
	Writing a File
	Seek
	Closing a File
	Linking to a File
	Unlinking a File
	Updating Metadata
	Creating Directories
	Deleting Directories
	Renaming
	I've Glossed Over Stuff

	File System Layout
	Components of a File System
	Boot Record and Superblock
	The I-List
	Data Area

	The Windows FAT File System
	The Windows FAT File System
	File Allocation Table
	Supporting Long Names

	Dump/Restore
	Dumping a Disk
	Dump Strategies
	Mapping a Filesystem
	Dumping a Filesystem




