
Design Issues 1 / 36

Local versus Global Allocation

■ When process A has a page fault, where does the new page frame come from?
■ More precisely, is one of A’s pages reclaimed, or can a page frame be taken

from another process?
■ If another process, do we bias the selection in any fashion?
■ If page replacement affects only the current process, we have a local policy; if

we look at all processes, we have a global allocation policy

1 / 36

Choosing

■ Global policies tend to work better
■ If you use a local policy and the working set grows, you can get thrashing
■ Similarly, if the working set shrinks, you waste memory
■ With a global policy, though, you need to decide how much memory to

allocate to each process

2 / 36

1



Memory Allocation

■ Fixed allocation — the same amount of space for all processes (a = m/p) —
is too simplistic

■ Better idea — allocate each process some memory in proportion to its size:
ai = m · mi/

∑p
i=1 mi

■ Do we want to use size or working set?
■ What about process priority? ai = m · (fprio(mi)/

∑p
i=1 mi

3 / 36

Memory Requirements Change

■ Processes grow and shrink
■ Working sets grow and shrink
■ Allocations must be changed over time
■ Monitor the page fault frequency (PFF) for each process
■ A process with a high PFF gets a larger allocation; a process with a small PFF

gets a smaller allocation

4 / 36

2



Measuring PFF

■ Count the number of page faults per second
■ Accumulate this as a moving average, of the type we’ve seen several times

before
■ For many algorithms, including LRU, PFF goes down as memory allocation

increases

5 / 36

Algorithms versus Allocation

■ Algorithms such as LRU and FIFO work with either local or global allocation
policies

■ Working set and WSclock are local-only
■ There’s no such thing as a working set for the entire system
■ Must rely on allocation policy for global effects

6 / 36

3



Swapping

■ As mentioned, the paging system has to interact with the scheduler
■ Thrashing can be detected when the PFF rate of some processes has gone up,

but none have gone down
■ Must swap some processes to disk: write out all (or most) of their pages and

reclaim their page frames

7 / 36

Controlling Swapping

■ Which processes should get swapped out?
■ Do we look at priority? Size? History?
■ Once processes are swapped out, when do they come back in?
■ Need a two-level scheduler, one for ordinary CPU access and one for swapping

out and in
■ For this second scheduler, what are we optimizing for? CPU utilization?

Throughput?

8 / 36

4



Page Size

■ With large pages, we waste memory: on average, half of the last page isn’t
used

■ With small pages, we use a lot of memory for page tables
■ Call the average process size s and the page size p. Assume that each page

table entry (and associated data structures) takes e bytes
■ The overhead o is o = (s/p)e + p/2
■ To optimize for memory use, differentiate and set to 0:

do/dp = −se/p2 + 1/2 = 0
■ Best size: p =

√
2se

9 / 36

Simulating Larger Pages

■ Possible to treat several smaller pages as one larger page
■ Still need separate hardware page table entries, but can reduce overhead

elsewhere
■ Big gain: fewer page faults
■ Other gains: auxiliary data structures

10 / 36

5



Page Sharing and Remapping

■ Context switch overhead can be reduced by page-sharing
■ Example: shared memory in Unix (shmat(), shmget(), etc.) share memory

between processes
■ Caution: processes must use appropriate locks
■ Comm pages allow processes to read (some) kernel data
■ Example: getpid() can be a simple subroutine

11 / 36

Memory-Mapped I/O

■ Instead of doing I/O, processes map a file onto a memory area, i.e., mmap()
■ Easy random access
■ Let the page algorithm handle the I/O
■ On Multics, there was no disk I/O; all files were simply areas of memory
■ Disadvantage: file size was limited by address space (actually, by segment size)

12 / 36

6



Page-Mapped I/O

■ Suppose a user I/O buffer is page-sized and page-aligned
■ Make sure that kernel disk buffers are page-sized and page aligned, too
■ When the user process does a read(), change the page table so that the disk

buffer is mapped to user space and the user’s buffer becomes part of kernel
memory

■ No overhead for copying!
■ Harder to do for write() — does the user process still want access to its

data?
■ Can sometimes “lend” pages, but mark them read-only

13 / 36

Don’t Copy!

■ Copying bulk data is very expensive
■ Limited by memory bandwidth; could use a lot of cache space
■ It’s worth considerable effort to avoid handling data extra times

14 / 36

7



Allocating Swap Space

■ Where does swap space come from?
■ Some systems allocate swap space as soon as the application is given main

memory
■ In other words, all of the memory of every process has a reserved spot on disk
■ Other systems allocate space as needed
■ What if they run out?

15 / 36

Storage for Disk Mapping

■ Where is the disk block address stored for a page?
■ Some systems reuse the page table entry if the “valid” bit is off
■ Works poorly if there’s a lot of swap space
■ Doesn’t work if if you keep the disk images of pages in case they’re not dirty

when reclaimed

16 / 36

8



Segmentation 17 / 36

Logical Segmentation

■ Earlier, we talked about segments for VM
■ There’s another type: user-controlled segments
■ Segments introduce non-linearity into the address space
■ There’s no carry into the segment bits when doing address arithmetic

17 / 36

Why Use Segments?

■ Code, data, and the stack are each separate segments
■ Shared libraries can each occupy a separate segment
■ That way, only the segment pointer needs to be separate; the same page table

can be used for each process using the library
■ In Multics, each file was mapped to a particular segment

18 / 36

9



Protection and Segments

■ Segments can have memory protection bits associated with them
■ For the uses just described, this is more convenient and more natural than

protecting each page independently

19 / 36

The Problems with Segments

■ Maximum contiguous address space is limited by segment size
■ For example, on the Intel 286, segments were limited to 64K; that meant that

no array could be larger than 64K bytes
■ Explicit segments are not often used today

20 / 36

10



Segments on the Pentium

■ Six segment registers: code, data, four others
■ 8K system and 8K user segments permitted
■ A segment descriptor contains a base/limit pair and a pointer to memory
■ That memory address may be virtual, in which case two levels of page table

are used
■ Three extra memory look-ups per memory reference!
■ Good thing we have a TLB. . .

21 / 36

Memory Allocation 22 / 36

Types of Memory

■ Kernel code — wired down (but some systems have used disk-resident system
calls that are swapped in as needed)

■ User code — paged in and out
■ Page tables — must be dynamically allocated
■ Stacks — also dynamically allocated
■ Disk I/O buffers
■ Network I/O buffers

22 / 36

11



Network I/O Buffers

■ Allocation can be fixed
■ If a user process writes too much, block
■ If a remote process writes too much, use flow control to make it shut up
■ If it doesn’t listen, drop packets

23 / 36

Disk I/O Buffers

■ How much memory should be allocated for disk I/O buffers?
■ Simplest solution: some fixed percentage of memory
■ Better solution: dynamically use memory for disk or for applications, as needed
■ When system goes I/O-bound, leave fewer pages for applications
■ When system is memory-bound, use fewer pages for disk I/O
■ Sounds good, but getting the balance right is tricky

24 / 36

12



Kernel Memory Allocation

■ Many kernel routines need to allocate memory dynamically
■ Similar to malloc() for application programs
■ These routines generally grab pages
■ If there are no page frames free, the request can fail
■ Often, there is a process context, and the process can block while waiting for a

page
■ Sometimes, the memory reclamation daemon is told to speed up

25 / 36

Managing Kernel Memory

■ Kernel memory allocation is very similar to non-VM memory region allocation
and malloc() allocation

■ As before, see Knuth vol. 1 for details
■ But — some systems will change the kernel’s memory map to permit creation

of large contiguous memory regions

26 / 36

13



Modeling Paging Systems 27 / 36

A Theory of Paging?

■ Can we figure out a theory of paging?
■ Can we predict performance?
■ Can we explain — or prevent — things like Belady’s Anomaly?

27 / 36

Reference Strings

■ A process can be characterized by an ordered list of the pages it accesses
■ This is called the reference string

■ A paging system can be described by three things: the reference string of the
process, the page replacement algorithm, and the number of page frames
available

28 / 36

14



An Abstract Model

■ The process we’re modeling has n pages
■ There are m page frames
■ Assume an n-element array M that keeps track of memory
■ M [n − m : n − 1] represents in-memory pages
■ M [0 : n − m − 1] contains all other pages

29 / 36

Simulating the Process

■ Take an entry from the reference string
■ If the top half of M has room, put the page in it
■ Otherwise, there’s a page fault
■ Apply the selected algorithm to move a page from the top of M to the bottom
■ Move the new page to the top half
■ Rearrange the top and bottom halves according to the algorithm

30 / 36

15



Simulating LRU

Reference string is 0 2 1 3 5 4 6 3 7 4 7 3 3 5 5.
Four page frames available.
0 2 1 3 5 4 6 3 7 4 7 3 3 5 5

0 2 1 3 5 4 6 3 7 4 7 3 3 5 5
0 2 1 3 5 4 6 3 7 4 7 7 3 3

0 2 1 3 5 4 6 3 3 4 4 7 7
0 2 1 3 5 4 6 6 6 6 4 4

0 2 1 1 5 5 5 5 5 6 6
0 2 2 1 1 1 1 1 1 1

0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0

P P P P P P P P P
∞ ∞ ∞ ∞ ∞ ∞ ∞ 4 ∞ 4 2 3 1 5 1

31 / 36

Stack Algorithms

■ If m varies over the possible page frames and r is an index into the reference
strings, we may have

M(m, r) ⊆ M(m + 1, r)

■ That is, for a given initial sequence of a reference string, those pages that are
at the top of M will still be in the top of M if there is one more page frame

■ Algorithms that satisfy this property are called stack algorithms

■ Belady’s Anomaly cannot occur with stack algorithms

32 / 36

16



Is LRU a Stack Algorithm?

■ Whenever a page is pushed below the line in LRU, it goes to the top of the
bottom section

■ If we move the boundary down by one page frame, we therefore include the
previously-displaced page

■ That means that the stack property holds — LRU is indeed a stack algorithm
■ FIFO is not

33 / 36

Distance Strings

■ Assume a stack algorithm
■ A distance string d is a set of page references where the value is “distance

from the top of the stack”
■ An unreferenced page isn’t on the stack and has distance ∞
■ Distance strings are algorithm-dependent
■ Small values are good; they indicate locality of reference
■ You want most elements of d to be less than the number of page frames
■ If d is mostly large numbers, you’re out of luck

34 / 36

17



Predicting Page Fault Rates

■ Scan the distance string and see how many times each value occurs
■ Let Ci be the number of times i is found; C∞ exists, too
■ For our example, 〈C1, C2, . . . , C7, C∞〉 = 〈4, 2, 1, 4, 2, 2, 1, 8〉
■ If m is the number of page frames,

Fm =
n∑

k=m+1

Ck + C∞

■ Fm is the number of page faults for that distance string and number of page
frames

35 / 36

Origin of our Strings

■ Where do reference and distance strings come from?
■ As always, we can simulate them, but we’re much better off getting real traces

from real programs
■ Note the implication: paging algorithm behavior can change if our workload

changes

36 / 36

18


	Design Issues
	Local versus Global Allocation
	Choosing
	Memory Allocation
	Memory Requirements Change
	Measuring PFF
	Algorithms versus Allocation
	Swapping
	Controlling Swapping
	Page Size
	Simulating Larger Pages
	Page Sharing and Remapping
	Memory-Mapped I/O
	Page-Mapped I/O
	Don't Copy!
	Allocating Swap Space
	Storage for Disk Mapping

	Segmentation
	Logical Segmentation
	Why Use Segments?
	Protection and Segments
	The Problems with Segments
	Segments on the Pentium

	Memory Allocation
	Types of Memory
	Network I/O Buffers
	Disk I/O Buffers
	Kernel Memory Allocation
	Managing Kernel Memory

	Modeling Paging Systems
	A Theory of Paging?
	Reference Strings
	An Abstract Model
	Simulating the Process
	Simulating LRU
	Stack Algorithms
	Is LRU a Stack Algorithm?
	Distance Strings
	Predicting Page Fault Rates
	Origin of our Strings


