
Real-Time Scheduling 1 / 39

Multiple Real-Time Processes

■ A runs every 30 msec; each time it needs 10 msec of CPU time
■ B runs 25 times/sec for 15 msec
■ C runs 20 times/sec for 5 msec
■ For our equation, A uses 10/30 of the CPU, B uses 15/40, and C uses 5/50;

that’s about 81%

2 / 39

1



Diagram

C2

A4A3A2

C1

A1

B3B2B1

0 10 20 30 50 60 80 9040 70

A1 must finish before A2 starts, B1 before B2,. . .

3 / 39

2



Other Issues

■ Some real-time systems permit preemption; some do not
■ Desirability depends on system type (text’s discussion is for multimedia

system, which are usually preemptible
■ May have aperiodic processes in the mix
■ Static or dynamic scheduling

4 / 39

Rate Monotonic Scheduling

■ A static scheduling algorithm by Lieu and Layland (1973)
■ Conditions:

1. Each periodic process completes within its slot
2. No interprocess dependencies
3. Each process needs the same amount of CPU each time
4. Non-periodic processes have no deadlines
5. Preemption happens instantly with no overhead

■ Yes, this is an oversimplified model. . .

5 / 39

3



Algorithm

■ Assign a process priority equal to its frequency:
A = 33, B = 25, C = 20

■ Always run the highest-priority runnable process
■ Thus, A can preempt B or C; B can preempt C
■ Proved optimal among class of static algorithms

6 / 39

4



RMS

A4 C3A2C1B1A1

C3C2

A4A3A2

C1

A1

B2B1

RMS

B3

B3

0 10 20 30 50 60 80 90 10040

B2

70

C2

110

A3

120

B3

Note that B3 is preempted to let A4 run

7 / 39

5



Earliest Deadline First

■ More general model
■ Supports aperiodic events, non-identical CPU bursts
■ Dynamic priority assignment
■ When a process starts, it announces its deadline
■ Priorities are assigned in order of deadline
■ Initially, A goes first, because it has to finish by T = 30; B’s deadline is

T = 40 and C’s is T = 50

8 / 39

6



EDF

A3 C3

120

A4C1B1A1

C3C2

A4A3A2

C1

A1

B3B2B1

EDF B3

0 10 20 30 50 60 80 90

A2

100

B2

40

C2

70 110

At T = 80, it gives B priority

9 / 39

7



RMS Doesn’t Always Work

■ Suppose that A needs 15 msec each time
■ Our formula says we’re ok: (15/30 + 15/40 + 5/50) = 97.5%
■ But it fails
■ A1 runs from T = 0 to T = 15; B1 runs from T = 15 to T = 30
■ At that point, A2 is ready, and has a higher priority than C1; B2 follows it
■ There’s no time for C1 before C2 has to start

10 / 39

8



RMS Failure

?
A2B1A1

A4A3A2A1

C3C2C1

B3B2B1

0 10 20 30 50 60 80 90 10040 70 110 120

RMS B2

C1 can’t run before C2 has to start

11 / 39

9



Why Did it Fail?

■ RMS is only guaranteed to work if

m∑

i=1

Ci

Pi
≤ m(21/m

− 1)

■ As m → ∞, utilization approaches ln 2 = 0.693
■ For m = 3, it can fail (though won’t always) at 78%
■ Maximum allowed utilization goes down as m increases
■ EDF will succeed for this example
■ The CPU idle period — 2.5% — will occur every 200 msec

12 / 39

10



EDF Succeeds

120

RMS

B1 B2 B3

C1 C2 C3

A1 A2 A3 A4

A1 B1 C1 A2 B2 A3 C2 B3 A4 C3

0 10 20 30 50 60 80 90 10040 70 110

Note that C1 runs before A2

13 / 39

11



Gantt Charts

■ The diagrams I’ve been using are called Gantt Charts

■ Useful tool for modeling process scheduling
■ Especially useful with an automated tool

14 / 39

Other Issues 15 / 39

Scheduling Threads

■ With user-level threads, there is no interaction with the scheduler
■ A kernel-level thread implementation relies on the system’s scheduler
■ It’s often beneficial to schedule several threads from the same process

consecutively — avoid changes to the memory map
■ Similar logic says keep threads from the same process on a single CPU, if

feasible
■ Application-level thread scheduler can handle priorities more easily, though

kernel-level priorities aren’t hard to set

16 / 39

12



Scheduling and Multiprocessor Systems

■ What processes run on which processor?
■ Does it matter?
■ What are the implications?

17 / 39

Asymmetric Multiprocessing

■ All kernel functions are handled by the master CPU
■ The only thing the other CPUs do in the kernel is pull processes off the run

queue and do context switches
■ Simplifies OS design — locking is much simpler
■ Common first step in OS conversion for multiprocessor use

18 / 39

13



Symmetric Multiprocessing

■ Each processor can do anything
■ Possible to have more than one CPU in the kernel simultaneously
■ Need fine-grained locking; single “big lock” is almost the same as asymmetric

MP
■ Locking is a very important issue for multiprocessors; we’ll discuss this more

on Wednesday

19 / 39

Processor Affinity

■ Sometimes, it’s better (or necessary) for a given process to execute on a
specific CPU

■ Example cited earlier: memory map (and cache)
■ I/O issues — sometimes a specific I/O devices is on a local bus

20 / 39

14



How Do We Measure CPU Time?

■ Early clocks were low resolution
■ Unix classic: 60 Hz
■ Too coarse to measure a fraction of a quantum
■ Besides, the clock was an I/O device, hence slow to access

21 / 39

Statistical Time

■ At each clock tick, add 1 to the current process’ CPU counter
■ Actually, two counters, one for user mode and one for kernel mode
■ Not accurate over short periods:

◆ A process may run for too short a time and not get charged
◆ A process may start its quantum right before the timer tick and be

charged too much

■ Statistically, though, it’s good enough

22 / 39

15



I/O and Memory

■ CPU time isn’t the only scarce resource
■ Especially today, total system performance is limited by I/O bandwidth and

memory availability
■ Must read programs in from disk
■ Must have memory for them
■ That may mean paging out another process, which puts more load on the disk
■ The scheduler should interact with the I/O subsystem and the memory

subsystem

23 / 39

Different Schedulers 24 / 39

Scheduler Algorithms

■ Modern systems may have many processes running
■ At this instant, for example, cluster is running 525 processes
■ Even on modern CPUs, we don’t want scheduling algorithms that iterate over

all processes
■ Linux uses a O(1) scheduler — scheduling decisions take constant time,

regardless of the number of processes

25 / 39

16



Policy versus Mechanism

■ Put some basic mechanism (or mechanisms) in the kernel
■ Permit user processes to set parameters that control scheduling
■ Simplest example: nice command
■ Solaris permits much more control: three classes of scheduler, and parameters

within that class

26 / 39

Solaris Scheduler

■ Scheduler classes: real-time, time-sharing, interactive
■ Parameters:

Real-Time priority, quantum
Kernel threads (System only)
Timesharing priority, priority limit
Interactive priority, priority limit

■ Newer versions of Solaris have fair-share scheduling and fixed-priority
scheduling

27 / 39

17



Solaris Priorities

Priority Quantum New Priority After Sleep
0 200 0 50
5 200 0 50
15 160 5 51

. . .
50 40 40 58
55 40 45 58
59 20 49 59

Higher priority processes get shorter quanta. Process get a lower priority when
they use up their quantum, and higher priority after blocking for I/O.

28 / 39

Linux Scheduler

■ Both real-time and priority
■ Real-time scheduling can be round-robin or FCFS
■ Dynamic timeslice (quantum) computation
■ Kernel preemption possible if no locks are held

29 / 39

18



Windows XP

■ Real-time and priority scheduling
■ Priority classes: Real-time, High, Above Normal, Normal, Below Normal, Idle
■ Relative priority within class: Time-critical, Highest, Above Normal, Normal,

Below Normal, Idle
■ Effective priority calculated from this matrix
■ Priority lowered on quantum expiration
■ Extra priority boost for process associated with current window
■ Unix can’t easily do that — the window manager knows nothing of processes

30 / 39

Evaluating Scheduler Algorithms 31 / 39

Algorithm Evaluation

■ First question: what criteria do you want to optimize for?
■ Possibilities include CPU utilization, responsiveness, real-time scheduling, etc.
■ Several ways to do the evaluation

32 / 39

19



Deterministic Modeling

■ Start with a specific workload, i.e., of process’ CPU demands and arrival times
■ Model them with Gantt charts, as we’ve seen
■ Evaluate according to desired metric
■ Simple and fast — and only useful for loads that look a lot like what you model

33 / 39

Queueing Theory

■ Start with probability distributions of CPU requests, arrival times, etc.
■ Common assumption: arrivals are distributed according to a Poisson

distribution
■ Sample (and simple) result:

Let n be the average queue length, W the average queue wait time,
and λ the mean interarrival time (regardless of distribution). Then

n = λ · W

34 / 39

20



Simulation

■ Build a simulator of the scheduling algorithm
■ Feed in simulated inputs and see what happens
■ Simulations can be fed by probability distributions or by trace data from real

systems
■ Such trace data is an excellent way to compare two different simulators

35 / 39

Metacomment

■ Trace data is always useful
■ Instruction traces, network packet traces, CPU load traces, etc.
■ Some such datasets become the way to evaluate new schemes

36 / 39

21



Build It and Try It

■ Build a real system and see what happens
■ But what’s the load? Real users?
■ If you’re lucky, you have trace data to feed in (and a system amenable to such

replays)

37 / 39

Limits of Evaluation

■ Load changes
■ Sometimes, load changes because of scheduler changes
■ Example: if a process gets the CPU more quickly after a disk I/O request, it

may be able to issue the next requiest within the rotational delay of the disk
■ Conclusion: we need flexible scheduling algorithms that can be tuned at each

site

38 / 39

22



Summary

■ Scheduling is a complex matter
■ The criteria and algorithms have changed somewhat, but the problem remains
■ Any time you click on something and it doesn’t respond immediately, there’s a

scheduler problem

39 / 39

23


	Real-Time Scheduling
	Multiple Real-Time Processes
	Diagram
	Other Issues
	Rate Monotonic Scheduling
	Algorithm
	RMS
	Earliest Deadline First
	EDF
	RMS Doesn't Always Work
	RMS Failure
	Why Did it Fail?
	EDF Succeeds
	Gantt Charts

	Other Issues
	Scheduling Threads
	Scheduling and Multiprocessor Systems
	Asymmetric Multiprocessing
	Symmetric Multiprocessing
	Processor Affinity
	How Do We Measure CPU Time?
	Statistical Time
	I/O and Memory

	Different Schedulers
	Scheduler Algorithms
	Policy versus Mechanism
	Solaris Scheduler
	Solaris Priorities
	Linux Scheduler
	Windows XP

	Evaluating Scheduler Algorithms
	Algorithm Evaluation
	Deterministic Modeling
	Queueing Theory
	Simulation
	Metacomment
	Build It and Try It
	Limits of Evaluation
	Summary


