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Multiple Real-Time Processes

■ A runs every 30 msec; each time it needs 10 msec of CPU time
■ B runs 25 times/sec for 15 msec
■ C runs 20 times/sec for 5 msec
■ For our equation, A uses 10/30 of the CPU, B uses 15/40, and C uses 5/50;

that’s about 81%
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Diagram
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A1 must finish before A2 starts, B1 before B2,. . .
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Other Issues

■ Some real-time systems permit preemption; some do not
■ Desirability depends on system type (text’s discussion is for multimedia

system, which are usually preemptible
■ May have aperiodic processes in the mix
■ Static or dynamic scheduling
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Rate Monotonic Scheduling

■ A static scheduling algorithm by Lieu and Layland (1973)
■ Conditions:

1. Each periodic process completes within its slot
2. No interprocess dependencies
3. Each process needs the same amount of CPU each time
4. Non-periodic processes have no deadlines
5. Preemption happens instantly with no overhead

■ Yes, this is an oversimplified model. . .

5 / 39

3



Algorithm

■ Assign a process priority equal to its frequency:
A = 33, B = 25, C = 20

■ Always run the highest-priority runnable process
■ Thus, A can preempt B or C; B can preempt C
■ Proved optimal among class of static algorithms
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RMS
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Note that B3 is preempted to let A4 run
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Earliest Deadline First

■ More general model
■ Supports aperiodic events, non-identical CPU bursts
■ Dynamic priority assignment
■ When a process starts, it announces its deadline
■ Priorities are assigned in order of deadline
■ Initially, A goes first, because it has to finish by T = 30; B’s deadline is

T = 40 and C’s is T = 50
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EDF
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At T = 80, it gives B priority
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RMS Doesn’t Always Work

■ Suppose that A needs 15 msec each time
■ Our formula says we’re ok: (15/30 + 15/40 + 5/50) = 97.5%
■ But it fails
■ A1 runs from T = 0 to T = 15; B1 runs from T = 15 to T = 30
■ At that point, A2 is ready, and has a higher priority than C1; B2 follows it
■ There’s no time for C1 before C2 has to start
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RMS Failure
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C1 can’t run before C2 has to start
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Why Did it Fail?

■ RMS is only guaranteed to work if

m∑

i=1

Ci

Pi
≤ m(21/m

− 1)

■ As m → ∞, utilization approaches ln 2 = 0.693
■ For m = 3, it can fail (though won’t always) at 78%
■ Maximum allowed utilization goes down as m increases
■ EDF will succeed for this example
■ The CPU idle period — 2.5% — will occur every 200 msec
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EDF Succeeds
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Note that C1 runs before A2
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Gantt Charts

■ The diagrams I’ve been using are called Gantt Charts

■ Useful tool for modeling process scheduling
■ Especially useful with an automated tool
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Scheduling Threads

■ With user-level threads, there is no interaction with the scheduler
■ A kernel-level thread implementation relies on the system’s scheduler
■ It’s often beneficial to schedule several threads from the same process

consecutively — avoid changes to the memory map
■ Similar logic says keep threads from the same process on a single CPU, if

feasible
■ Application-level thread scheduler can handle priorities more easily, though

kernel-level priorities aren’t hard to set
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Scheduling and Multiprocessor Systems

■ What processes run on which processor?
■ Does it matter?
■ What are the implications?
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Asymmetric Multiprocessing

■ All kernel functions are handled by the master CPU
■ The only thing the other CPUs do in the kernel is pull processes off the run

queue and do context switches
■ Simplifies OS design — locking is much simpler
■ Common first step in OS conversion for multiprocessor use
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Symmetric Multiprocessing

■ Each processor can do anything
■ Possible to have more than one CPU in the kernel simultaneously
■ Need fine-grained locking; single “big lock” is almost the same as asymmetric

MP
■ Locking is a very important issue for multiprocessors; we’ll discuss this more

on Wednesday
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Processor Affinity

■ Sometimes, it’s better (or necessary) for a given process to execute on a
specific CPU

■ Example cited earlier: memory map (and cache)
■ I/O issues — sometimes a specific I/O devices is on a local bus
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How Do We Measure CPU Time?

■ Early clocks were low resolution
■ Unix classic: 60 Hz
■ Too coarse to measure a fraction of a quantum
■ Besides, the clock was an I/O device, hence slow to access
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Statistical Time

■ At each clock tick, add 1 to the current process’ CPU counter
■ Actually, two counters, one for user mode and one for kernel mode
■ Not accurate over short periods:

◆ A process may run for too short a time and not get charged
◆ A process may start its quantum right before the timer tick and be

charged too much

■ Statistically, though, it’s good enough
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I/O and Memory

■ CPU time isn’t the only scarce resource
■ Especially today, total system performance is limited by I/O bandwidth and

memory availability
■ Must read programs in from disk
■ Must have memory for them
■ That may mean paging out another process, which puts more load on the disk
■ The scheduler should interact with the I/O subsystem and the memory

subsystem
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Different Schedulers 24 / 39

Scheduler Algorithms

■ Modern systems may have many processes running
■ At this instant, for example, cluster is running 525 processes
■ Even on modern CPUs, we don’t want scheduling algorithms that iterate over

all processes
■ Linux uses a O(1) scheduler — scheduling decisions take constant time,

regardless of the number of processes
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Policy versus Mechanism

■ Put some basic mechanism (or mechanisms) in the kernel
■ Permit user processes to set parameters that control scheduling
■ Simplest example: nice command
■ Solaris permits much more control: three classes of scheduler, and parameters

within that class
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Solaris Scheduler

■ Scheduler classes: real-time, time-sharing, interactive
■ Parameters:

Real-Time priority, quantum
Kernel threads (System only)
Timesharing priority, priority limit
Interactive priority, priority limit

■ Newer versions of Solaris have fair-share scheduling and fixed-priority
scheduling
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Solaris Priorities

Priority Quantum New Priority After Sleep
0 200 0 50
5 200 0 50
15 160 5 51

. . .
50 40 40 58
55 40 45 58
59 20 49 59

Higher priority processes get shorter quanta. Process get a lower priority when
they use up their quantum, and higher priority after blocking for I/O.
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Linux Scheduler

■ Both real-time and priority
■ Real-time scheduling can be round-robin or FCFS
■ Dynamic timeslice (quantum) computation
■ Kernel preemption possible if no locks are held
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Windows XP

■ Real-time and priority scheduling
■ Priority classes: Real-time, High, Above Normal, Normal, Below Normal, Idle
■ Relative priority within class: Time-critical, Highest, Above Normal, Normal,

Below Normal, Idle
■ Effective priority calculated from this matrix
■ Priority lowered on quantum expiration
■ Extra priority boost for process associated with current window
■ Unix can’t easily do that — the window manager knows nothing of processes
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Algorithm Evaluation

■ First question: what criteria do you want to optimize for?
■ Possibilities include CPU utilization, responsiveness, real-time scheduling, etc.
■ Several ways to do the evaluation
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Deterministic Modeling

■ Start with a specific workload, i.e., of process’ CPU demands and arrival times
■ Model them with Gantt charts, as we’ve seen
■ Evaluate according to desired metric
■ Simple and fast — and only useful for loads that look a lot like what you model
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Queueing Theory

■ Start with probability distributions of CPU requests, arrival times, etc.
■ Common assumption: arrivals are distributed according to a Poisson

distribution
■ Sample (and simple) result:

Let n be the average queue length, W the average queue wait time,
and λ the mean interarrival time (regardless of distribution). Then

n = λ · W
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Simulation

■ Build a simulator of the scheduling algorithm
■ Feed in simulated inputs and see what happens
■ Simulations can be fed by probability distributions or by trace data from real

systems
■ Such trace data is an excellent way to compare two different simulators
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Metacomment

■ Trace data is always useful
■ Instruction traces, network packet traces, CPU load traces, etc.
■ Some such datasets become the way to evaluate new schemes
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Build It and Try It

■ Build a real system and see what happens
■ But what’s the load? Real users?
■ If you’re lucky, you have trace data to feed in (and a system amenable to such

replays)
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Limits of Evaluation

■ Load changes
■ Sometimes, load changes because of scheduler changes
■ Example: if a process gets the CPU more quickly after a disk I/O request, it

may be able to issue the next requiest within the rotational delay of the disk
■ Conclusion: we need flexible scheduling algorithms that can be tuned at each

site
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Summary

■ Scheduling is a complex matter
■ The criteria and algorithms have changed somewhat, but the problem remains
■ Any time you click on something and it doesn’t respond immediately, there’s a

scheduler problem
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