
A Write Operation in the Kernel

queued_len += user_len;

if (queued_len == user_len)

startio();

If there’s no I/O in progress start it up.

Steven M. Bellovin February 13, 2006 1



But an Interrupt Happens in the Middle

queued_len += user_len;

queued_len -= io_block_len;

if (queued_len == user_len)

startio();

The if statement will fail to start the I/O

Steven M. Bellovin February 13, 2006 2



What’s the Problem?

• With interrupts, code execution isn’t linear

• Two different flows of execution accessed the same variable at about
the same time

• We need a way to prevent that

• As always, multiprocessors makes this much worse

Steven M. Bellovin February 13, 2006 3



Race Condition

• Undesirable behavior that can occur from inappropriate reliance on
ordering of operations

Steven M. Bellovin February 13, 2006 4



When Can Race Conditions Occur?

• Between threads

• Between processes

• Between main level and interrupt level

• Between multiple processors

• Between the CPU and I/O devices

• Any time two flows of control can access the same storage

Steven M. Bellovin February 13, 2006 5



Race Conditions are Bad

• System hangs

• System crashes

• Lost data

• Security problems

• Unpredictability

Steven M. Bellovin February 13, 2006 6



Critical Regions

• The part of a program that uses a shared variable is a critical region

• Two (or more) programs can’t be in their critical regions at the same
time

• One program (or process or thread or device) has to block if it needs
access to the critical region while the other is in its critical region

Steven M. Bellovin February 13, 2006 7



Critical Regions

B blocked

Process A

Process B

critical
A leaves

region

B requests
critical
region

B enters
critical
region

B leaves
critical
region

A enters
critical
region

Steven M. Bellovin February 13, 2006 8



Desired Properties

1. No two processes can be simultaneously in their critical regions
(safety)

2. No assumptions can be made about CPU speeds, number of
processors, etc. (generality)

3. Processes not requesting entry to a critical region must not block
because another process is using it (efficiency)

4. All processes must eventually get a chance to enter the critical region
(fairness)

Steven M. Bellovin February 13, 2006 9



Entering a Critical Region

• We have to have mechanisms that mediate access to critical regions

• Control flows must — somehow — signal when they’re entering and
leaving a critical region

• Access to shared data must not occur outside the critical region

Steven M. Bellovin February 13, 2006 10



Disabling Interrupts

• Available only to the kernel

• Better not be available to user processes!

• Doesn’t work well on multiprocessors

• A special-case solution for the kernel only

Steven M. Bellovin February 13, 2006 11



Lock Variables

• How about this?

while (lock != 0)

;

/* Start critical region */

lock = 1;

...

/* End critical region */

lock = 0;

• Doesn’t work — there’s a window between testing for zero and setting
it to 1

Steven M. Bellovin February 13, 2006 12



Let’s Use a C Feature: ++

• while(lock++ != 0)
lock--;

/* critical region ...*/

• Is lock++ atomic?

• No — the language makes no guarantees about that!

• IBM mainframe sequence:

L R0,lock Fetch variable into Register 0
LR R1,R0
A R1,=F’1’ Increment it
ST R1,lock Store new value in ’lock’
C R0,=F’0’ Compare original value to 0
BZ CRITREG If so, go on...

• No atomic “increment” instruction!
Steven M. Bellovin February 13, 2006 13



Test and Set Lock

• We need an atomic test/set instruction

• Some — but not all — architectures have one

• The instruction reads the old value and writes non-zero into the
location

• The memory bus is locked during this instruction — even a second
CPU can’t intervene

Steven M. Bellovin February 13, 2006 14



Using “Test and Set Lock”

LOCKTST TSL R0,lock Copy lock to R0 and set it non-zero

CMP R0,#0 Was it zero?

BNZ LOCKTST Branch back if non-zero

Instead of a special instruction, the Pentium has a LOCK prefix that can
be applied to several instructions.

Steven M. Bellovin February 13, 2006 15



Strict Alternation

Process 0
while (TRUE) {

while (turn != 0)

;

critical_region();

turn = 1;

noncritical_region();

}

Process 1
while (TRUE) {

while (turn != 1)

;

critical_region();

turn = 0;

noncritical_region();

}

Steven M. Bellovin February 13, 2006 16



Disadvantages of Strict Alternation

• Suppose that Process 1’s non-critical region code takes a long time to
execute

• It won’t re-enter its critical region

• Until it does, Process 0 can’t re-enter its own critical region

• This violates our efficiency principle

Steven M. Bellovin February 13, 2006 17



Peterson’s Algorithm (1981)

• Simple algorithm using only ordinary (i.e., non-locking) instructions

• Described in a two-page paper that includes a (simple) proof

• See the reading list

Steven M. Bellovin February 13, 2006 18



Peterson’s Algorithm

int turn, interested[2];
void enter_region(int process)
{

int other;
other = 1-process;
interested[process] = TRUE;
turn = process;
while (turn == process && interested[other] == TRUE)

;
}

void leave_region(int process)
{

interested[process] = FALSE;
}

Steven M. Bellovin February 13, 2006 19



Spin Locks

• All three correct solutions — Test and Set Lock, Strict Alternation,
Peterson’s Algorithm — involve busy waiting

• Also known as a spin lock

• Acceptable for short waits, especially on multiprocessors or when
dealing with interrupt contexts

• For general-purpose use, need a solution that permits sleeping

Steven M. Bellovin February 13, 2006 20



Spin Locks and Priority Inversion

• Suppose we have two processes with different priorities, H and L

• L never runs if H is runnable

• While H is sleeping, the low priority process L grabs the spin lock

• H wakes up and tries to get the lock

• It spins, waitng for L to free it

• But L can’t get the CPU, so it doesn’t progress

• One example of a deadlock

Steven M. Bellovin February 13, 2006 21



Classic Problem: Produce-Consumer

• Producer wants to add elements to bounded-size buffer

• If buffer is full, producer must sleep

• Consumer wants to remove items from buffer

• If buffer is empty, consumer must sleep

Steven M. Bellovin February 13, 2006 22



Producer-Consumer

#define N 100

int count = 0;

Producer
while (TRUE) {

item = produce_item();

if (count == N) sleep();

insert_item();

if (count++ == 0)

wake(consumer);

}

Consumer
while (TRUE) {

if (count == 0) sleep();

item = remove_item();

if (count-- == N)

wake(producer);

consume_item(item);

}

Obvious race conditions
Steven M. Bellovin February 13, 2006 23



Semaphores

• Invented by Dijkstra in 1965

• Two operations: down (sometimes known as P) and up (also known
as V)

• down : decrements semaphore variable if greater than zero; if 0,
process sleeps before doing the decrement

• Note: check, decrement, and sleep are atomic

• up : increments semaphore; if a process was sleeping on it, wake it
and let it do its decrement

• Generalizes well to multiple users of the semaphore

Steven M. Bellovin February 13, 2006 24



Using Semaphores

semaphore mex = 1;

down(&mex);

/* critical region */

up(&mex);

Steven M. Bellovin February 13, 2006 25



Implementing Semaphores

• Typically done in the kernel

• Mask interrupts while manipulating semaphore

• On multiprocessors, use Test and Set Lock protection as well

• Both of these are for only a few microseconds — not a serious
problem

Steven M. Bellovin February 13, 2006 26



Producer-Consumer with Semaphores

#define N 100

int count = 0;

semaphore mutex = 1, empty = N, full = 0;

Producer
while (TRUE) {

item = produce_item();

down(&empty);

down(&mutex);

insert_item();

up(&mutex);

up(&full);

}

Consumer
while (TRUE) {

down(&full);

down(&mutex);

item = remove_item();

up(&mutex);

up(&empty);

consume_item(item);

}

Steven M. Bellovin February 13, 2006 27



Two Different Uses of Semaphores

• Counting semaphores — atomic way to manipulate a counter with
blocking if 0

• In the example, empty counts how many slots are free and full is
the number of slots that are full

• Used for sleep/wake when buffer is in the wrong state

• Mutual exclusion semaphores — make sure only process is in critical
region

• In this case, it protects access to the buffer

• (Probably, that code should be in the insert item()/
remove item() routines)

Steven M. Bellovin February 13, 2006 28



Mutexes

• Special case of semaphore: useful when no counting is needed

• If Test and Set Lock instruction is available, easy to implement at user
level for thread package

• Try to grab lock; if unsuccessful, let another thread run

• But — if the thread holding the lock is blocked, this thread will burn
CPU time until the OS intervenes

Steven M. Bellovin February 13, 2006 29



The Risks of Semaphores and Mutexes

• Using semaphores and mutexes correctly is difficult

• If you get it wrong, you can deadlock

• Testing is difficult, because it’s all timing-dependent

• We need a higher-level construct

Steven M. Bellovin February 13, 2006 30



Monitors

• Invented by Hoare (1974) and Brinch Hansen (1975)

• A programming language construct

• Java has it; C and C++ do not

• A monitor is like a class, but only one thread can be executing in it
at a time

• In other words, they’re a language implementation of mutexes

Steven M. Bellovin February 13, 2006 31



Monitors and Application Blocking

• We still need a way to block if, say, the buffer is full

• Two new operations: wait and signal

• Subtle semantics about who gets to run within the monitor after a
signal call

– Hoare: signaler blocks; waiter runs

– Brinch Hansen: signal can only be done when exiting the
monitor

– Or: signaler keeps running; waiter resumes when signaler
exits monitor

Steven M. Bellovin February 13, 2006 32



The Disadvantages of Monitors

• Monitors are nice, but they’re only available in a very few languages

• Monitors, semaphores, and mutexes are find on a single machine,
even a multiprocessor

• They don’t work well without some shared memory

• What about a distributed system connected via a LAN?

Steven M. Bellovin February 13, 2006 33



Message Passing

• Model based on network operations:
send(dest, &mesg);
recv(src, &mesg);

• Receiver blocks if there’s no data available

• Sender blocks if the receiver’s buffers are full

• Complex network questions, including acknowledgment, flow control,
error detection and correction, message ordering, and authentication
— all out of scope for this course

Steven M. Bellovin February 13, 2006 34



Using Message Passing

• Many different paradigms of how to use it

• Rendezvous — one message at a time; sender and receiver operate
in lock-step

• Mailboxes — fixed-size buffers on channel; sender blocks if they’re full

• Explicit requests — empty messages from the consumer to the
producer

Steven M. Bellovin February 13, 2006 35



Summary

• IPC can be hard

• Many possible schemes, depending on environment and underlying
OS

• Danger of deadlock — topic for next class. . .

Steven M. Bellovin February 13, 2006 36


