
Multiprogramming

• Computers don’t really run multiple programs simultaneously; it just
appears that way

• Each process runs to completion, but intermixed with other processes

20 ticks

Process 1

Process 2

Process 3

CPU Use

time

6 ticks

6 ticks

6.5 ticks

• The exact timing pattern varies for each process

• Note the idle times

Steven M. Bellovin January 25, 2006 1



Process Time

• What matters is that each process eventually finishes

• You start reading a book, put it down for a while, pick it back up and
resume where you left off

• As long as you finish soon enough — whatever that means — the
exact time doesn’t matter

Steven M. Bellovin January 25, 2006 2



Real-Time Scheduling

• In some environments, processes need to run at the right time

• Think of process control computers — valves must open and close
promptly

• Not suitable for this paradigm

Steven M. Bellovin January 25, 2006 3



What’s a Process?

• I keep talking about “processes”. What are they?

• No rigorous definition!

• Precise characteristics differ on different systems

• Common themes: separately scheduled; some measure of isolation

Steven M. Bellovin January 25, 2006 4



Separately Scheduled

• On all systems, processes can compete for the CPU

• One process blocking or being pre-empted lets another process run

• On some systems, a process can be composed of several threads
that themselves can compete for the CPU

• On multiprocessor (multi-CPU) machines, different processes can
execute truly simultaneously on different CPUs

Steven M. Bellovin January 25, 2006 5



Isolation

• Termination protection

• Address space

• Security context

• Other system-related state

Steven M. Bellovin January 25, 2006 6



Termination

• Processes are generally isolated from failures of other processes

• Termination of a process — normal or abnormal — does affect other
processes

• Often a reason for process creation: let failures happen in an isolated
setting, with minimal cleanup needed

Steven M. Bellovin January 25, 2006 7



Address Space

• Processes often have separate address spaces from each other

• Changes to memory in one process do not affect other processes

• May or may not use virtual memory to provide overlapped address
space — on early PDP-11 Unix systems, all processes started at
location 0

Steven M. Bellovin January 25, 2006 8



Exceptions. . .

• On OS/360, the job was the unit of memory protection; all “tasks” (the
OS word for “process”) shared memory

• On some versions of MVS, all jobs have parts of kernel memory
available at the same addresses

• On Unix systems, program instructions — but not data — are shared
among different processes; this often includes shared libraries

• Unix processes can arrange to share certain memory areas

• Files can be mapped to memory areas; on different processes, the
same data can thus appear at different addresses

Steven M. Bellovin January 25, 2006 9



Security Context

• Access credentials — UID on Unix — are process-specific

• SetUID applies to a process

• On some systems, process can share credentials

Steven M. Bellovin January 25, 2006 10



System State

• Open files

• Current working directory

• Trap-handling state

• Permissions for newly-created files

• Often much more

Steven M. Bellovin January 25, 2006 11



A Historical Note

• PDP-11s had a 16-bit address space: 65536 bytes

• The page size — the granularity of memory protection — was 4096
bytes

• Even with tiny programs, that meant at most 16 processes if they
shared address space

• Separate address space per process was a necessity

Steven M. Bellovin January 25, 2006 12



Processes and System Calls

• Suppose a process issues a system call. What happens in the
kernel?

• Interrupt hardware saves old PSW; loads new PSW

• Software interrupt handler saves registers; branches to system call
dispatcher

• Dispatcher figures out which system call it is, and calls that subroutine

• That subroutine may call others

• We need a stack

Steven M. Bellovin January 25, 2006 13



The Kernel Stack

• As discussed previously, cannot trust user-level setup

• Must have a kernel stack

• Stack size is limited — watch for too-deep recursion!

• Where is this stack?

Steven M. Bellovin January 25, 2006 14



Per-Process Stacks

• Suppose this system call blocks waiting for I/O

• Another process can run; what if it issues a system call?

• It can’t share the first process’ stack, because that one may need to
be used while this one is active

• We need a separate kernel stack per process!

Steven M. Bellovin January 25, 2006 15



Per-Process State

• Actually, we need a lot of state per process

• The basic per-process structure on Linux (task struct) is 175 lines
of C, and it points to other per-process structures

• What’s in them?

• Two broad classes: fields needed when running and fields needed
when deciding whether or not to run the process

Steven M. Bellovin January 25, 2006 16



Per-Process State: Always Needed

• Process state: running, ready, blocked

• What it’s blocked on

• resource (CPU, RAM, I/O, etc.) usage history

• Priority

• Signal status

• ProcessID, process group

• Pointers to other fields

• Memory allocations

Steven M. Bellovin January 25, 2006 17



Per-Process State: Needed When Running

• Kernel stack

• PSW, program counter

• Open file descriptors

• Some state information, such as current directory

• user credentials

Steven M. Bellovin January 25, 2006 18



Scheduling State Transition

Blocked

Running Ready

Note that when making the transition from Blocked to Ready, it may be
necessary to copy in some state data from disk. This, of course, is itself a
blocking operation.

Steven M. Bellovin January 25, 2006 19



Process Creation

• The first process is created at boot time

• Any process, including that one, can create new processes

• Details differ widely between operating systems

Steven M. Bellovin January 25, 2006 20



Process Creation on Unix

• Basic operation: fork()

• Creates an exact copy of the process, code, data, and state

• Only difference: parent is passed back processID of child; child is
passed back 0

• The child process typically manipulates some file descriptors, then
exec()s some other program

• Note: virtually all Unix commands create separate processes. (That
had been the intention for Multics, but it was too expensive there.)

Steven M. Bellovin January 25, 2006 21



Optimization?

• Copying all of that data is expensive

• Instead, use the same pages, marked read-only, and let the virtual
memory system copy as needed

• Manipulating all of those page table entries is remarkably expensive,
too — it saves less than you might hope

Steven M. Bellovin January 25, 2006 22



Inheritance

• Unix processes inherit copies of file descriptors

• If you’re not careful, output can be intermixed; input consumed by one
is not available to the other

• Since an X11 window is an open file descriptor, windows are inherited
as well

• All of this is very powerful, but easy to get wrong

Steven M. Bellovin January 25, 2006 23



Process Creation on Windows

• The CreateProcess call creates processes on Windows

• Executing a new program is part of the process creation mechanism

• 10 parameters control the program to be executed, window creation,
priority, security attributes, file inheritance, and much more

• The Windows call does more for you, but is it simpler?

Steven M. Bellovin January 25, 2006 24



Process Relationships in Unix

• A newly-created process is a child of the parent process

• When a child process terminates, its resource consumption is passed
up to the parent

• The parent process is notified when a child terminates, and needs to
“reap” it (via the wait() system call)

• If not, the process remains a zombie

• Processes whose parent dies become children of process 1

Steven M. Bellovin January 25, 2006 25



Process Groups

• Related processes — say, all the elements of a pipeline — form a
process group

• Certain signals — interrupts to a process — are sent to all members
of a process group

• Thus, if you hit ˆC , all of the processes are killed

Steven M. Bellovin January 25, 2006 26



Windows Process Relationships

• All Windows processes are siblings; there are no other relationships

• When a process creates another process, it receives a process
handle that can be used to control that process

• The process handle can be passed around to other processes

Steven M. Bellovin January 25, 2006 27



Process Termination

• When a process terminates, its resources must be freed

• Some of these resources including open files; closing a file can block

• Termination isn’t easy, and may not terminate quickly. . .

Steven M. Bellovin January 25, 2006 28



Creating a Process — Overview

• Parent issues a system call

• Interrupt handler invokes the kernel

• Kernel creates the process

• At some point, it runs

Steven M. Bellovin January 25, 2006 29



Issuing a System Call

Parent Issues (machine-language) system call instruction

Hardware Old PSW and program counter are saved

Hardware New PSW and program counter are loaded

Assembler Registers are saved in current process’ kernel data structure

Assember System call dispatcher is invoked

C Process creation routine invoked

Steven M. Bellovin January 25, 2006 30



Process Creation Routine

• Verify that resources are available

– Process table entry

– User’s process quota

• Create new process table entry

• Copy inherited data to new process

• Make sure “saved” registers are correct, including return value to
indicate it’s a child process

• Return to system call dispatcher

Steven M. Bellovin January 25, 2006 31



Returning From the Kernel

• When the new process is created, the dispatcher invokes the
scheduler

• The scheduler decides which process will run next — the parent, the
child, or some other process entirely

• Assembler code restores registers for whatever process is the next to
run

• The old PSW and program counter are reloaded by “return from
interrupt” instruction

Steven M. Bellovin January 25, 2006 32



Note Well. . .

• How the new proces behaves is completely determined by what is
put into the process structure

• “Registers” aren’t a C concept, but the contents of the any process’
registers are determined by what is put into this structure

• Many subtle details; see “You are not expected to understand this” at
http://cm.bell-labs.com/cm/cs/who/dmr/odd.html

Steven M. Bellovin January 25, 2006 33



Summary

• Processes are fundamental to multiprogramming

• The details differ widely among different systems

• Process creation and interrupt-handling are closely linked

Steven M. Bellovin January 25, 2006 34


