
Access Control

Steven M. Bellovin September 2, 2014 1

Security Begins on the Host

• Even without a network, hosts must enforce the CIA trilogy

• Something on the host — the operating system aided by

the hardware — must provide those guarantees

Steven M. Bellovin September 2, 2014 2

Access Control

• Hardware

• Software

– Operating systems

– Databases

– Other multi-access programs

• Distributed

Steven M. Bellovin September 2, 2014 3

Hardware

• What is the minimum necessary?

• What do other mechanisms buy us?

Steven M. Bellovin September 2, 2014 4

Minimum Functionality

• Protect the OS from applications

• Protect applications from each other

• Change state from application to OS

• Timer interrupt

Steven M. Bellovin September 2, 2014 5

Why a Timer?

• Availability is a security feature

• Must prevent uncooperative applications from hogging CPU

• Not going to discuss this more here, but it’s a major topic

in W4118 (Operating Systems)

Steven M. Bellovin September 2, 2014 6

Historical Mechanisms

• Single privileged mode bit — restrict ability to execute

certain instructions

• Memory protection

• Interrupts — hardware and software — cause state

transition

Steven M. Bellovin September 2, 2014 7

What Are Privileged Instructions?

• Ability to do I/O without the OS’s intervention — allowing

that could bypass file permission checking

• Ability to manipulate timers

• Ability to access other programs’ memory without OS

intervention

Steven M. Bellovin September 2, 2014 8

Example: IBM System/360 Mainframe

• Designed in the early 1960s

• Much of the architecture still in use. . .

• 4-bit protection key associated with each 4K block of

memory, plus read-protect bit

• Single “supervisor mode” bit

• 4-bit state key of 0 can write to anything

• But — operating systems of that time didn’t use the

hardware to its full capabilites

Steven M. Bellovin September 2, 2014 9

Memory-Mapped Control

• On some machines, privileged operations work by memory

access

• If applications have no access to such memory, they can’t

do sensitive things

• But — must have way to enter privileged state

Steven M. Bellovin September 2, 2014 10

Multics

• Virtual memory

• “Ring” structure — 8 different privilege levels (i386 has

rings, too)

• OS could use rings 0-3; applications could use 4-7.

• (Original design had 64 rings!)

• Each ring is protected against higher-numbered rings

• Special form of subroutine call to cross rings

• Most of the OS didn’t run in Ring 0

Steven M. Bellovin September 2, 2014 11

What is the Advantage of Rings?

• A single bit is theoretically sufficient

• Assurance!

• Don’t need to trust all parts of the system equally

• “Principle of Least Privilege”

Steven M. Bellovin September 2, 2014 12

Assurance

• How do you know something is secure

• Much harder to provide later than features

• A trustable secure system has to be designed that way from

the beginning: designed, document, coded, and tested —

and maybe proved

Steven M. Bellovin September 2, 2014 13

Underlying Principles of Privilege

• Two basic approaches to privilege: identity and attribute

• Hardware protection is attribute: the state of various

registers controls what can and cannot be done

• Easier to manage in a single system

Steven M. Bellovin September 2, 2014 14

What is the role of the OS?

• Protect itself

• Separate different applications

• More?

Steven M. Bellovin September 2, 2014 15

Operating Systems and Hardware

• The hardware provides the minimum functionality

• The OS has to provide its own services on top of that

• Must manage access to I/O devices as well

Steven M. Bellovin September 2, 2014 16

What Protections do Operating
Systems Provide?

• User authentication (why?)

• File protection

• Process protection

• Resource scheduling (CPU, RAM, disk space, etc)

Steven M. Bellovin September 2, 2014 17

User Authentication

• (Much more on this later)

• Why authenticate users?

• Most operating system privileges are granted by identity,

not attributes

• Procedure:

Authenticate user

Grant access based on userid

Steven M. Bellovin September 2, 2014 18

File Permissions

• Besides user authentication, the most visible aspect of OS

security

• Read protection — provide confidentiality

• Write protection — provide integrity protection

• Other permissions as well

Steven M. Bellovin September 2, 2014 19

Classical Unix File Permissions

• All files have “owners”

• All files belong to a “group”

• Users, when logged in, have one userid and several groupids.

• 3 sets of 3 bits: read, write, execute, for user, group, other

• (512 possible settings. Do they all make sense?)

• Written rwxrwxrwx

• 111 101 001: User has read/write/exec; group has

read/exec; other has exec-only

• Some counter-intuitive settings are very useful

Steven M. Bellovin September 2, 2014 20

Permission-Checking Algorithm

if curr_user.uid == file.uid

check_owner_permissions();

else if curr_user.gid == file.gid

check_group_permissions();

else

check_other_permissions();

fi

Note the else clauses — if you own a file, “group” and “other”

permissions aren’t checked

Steven M. Bellovin September 2, 2014 21

Execute Permission

• Why is it separate from “read”?

• To permit only execution

• Cannot copy the file

• Readable only by the OS, for specific purposes

Steven M. Bellovin September 2, 2014 22

Directory Permissions

• “write”: create a file in the directory

• “read”: list the directory

• “execute”: trace a path through a directory

Steven M. Bellovin September 2, 2014 23

Example: Owner Permissions

$ id

uid=54047(smb) gid=54047(smb) groups=0(wheel),3(sys),54047(smb)

$ ls -l not me

----r--r-- 1 smb wheel 29 Sep 12 01:35 not me

$ cat not me

cat: not me: Permission denied

I own the file but don’t have read permission on it

Steven M. Bellovin September 2, 2014 24

Example: Directory Permissions

$ ls -ld oddball

dr--r--r-- 2 smb wheel 512 Sep 12 01:36 oddball

$ ls oddball

cannot get at

$ ls -l oddball

ls: cannot_get_at: Permission denied

$ cat oddball/cannot get at

cat: oddball/cannot get at: Permission denied

I can read the directory, but not trace a path through it to

oddball/cannot get at

Steven M. Bellovin September 2, 2014 25

Deleting Files

• What permissions are needed to delete files?

• On Unix, you need write permission on the parent directory

• You can delete files that you can’t write. You can also

write to files that you can neither create nor delete

• Other systems make this choice differently

Steven M. Bellovin September 2, 2014 26

Historical Note

• Unix has never been fond of asking “do you really mean

that?”

• That said, at least as long ago as February 1973 the

original Bell Labs Unix rm command prompted if you tried

to delete a file you couldn’t write

• In other words, the Unix model is philosophically correct but

perhaps incorrect from a human factors perspective

Steven M. Bellovin September 2, 2014 27

Access Control Lists

• 9-bit model not always flexible enough

• Many systems (Multics, Windows XP and later, Solaris,

some Linux) have more general Access Control Lists

• ACLs are explicit lists of permissions for different parties

• Wildcards are often used

Steven M. Bellovin September 2, 2014 28

Sample ACL

smb.* rwx

4187-ta.* rwx

*.faculty rx

. x

Users “smb” and ‘4187-ta” have read/write/execute

permission. Anyone in group “faculty” can read or execute the

file. Others can only execute it.

Steven M. Bellovin September 2, 2014 29

Order is Significant

With this ACL:

*.faculty rx

smb.* rwx

4187-ta.* rwx

. x

I would not have write access to the file

Steven M. Bellovin September 2, 2014 30

MacOS ACLs

Steven M. Bellovin September 2, 2014 31

Windows Vista ACLs

Steven M. Bellovin September 2, 2014 32

Linux/Solaris ACLs

$ getfacl acl.pdf

file: acl.pdf

owner: smb

group: smb

user::rw-

user:postfix:-w-

group::r--

group:landscape:--x

mask::rwx

other::r--

The standard Unix permissions are translated into ACL entries

Steven M. Bellovin September 2, 2014 33

Setting File Permissions

• Where do initial file permssions come from?

• Who can change file permissions?

Steven M. Bellovin September 2, 2014 34

Unix Initial File Permissions

• Unix uses “umask” — a set of bits to turn off when a

program creates a file

• Example: if umask is 022 and a program tries to create a

file with permissions 0666 (rw for user, group, and other),

the actual permissions will be 0644.

• Default system umask setting has a great effect on system

file security

• Set your own value in startup script; value inherited by child

processes

Steven M. Bellovin September 2, 2014 35

Why Umask?

• Suppose files were always created with rw,r,r permissions

• What’s wrong with the application simply changing the file

permissions after creating the file?

• Race conditions

Steven M. Bellovin September 2, 2014 36

Multics Initial File Permissions

• Directories contain “initial access control list” — values set

by default for new files

• Common setting:

smb.faculty rw

*.sysdaemon r

. -

• If group “sysdaemon” doesn’t have read permission, the file

can’t be backed up!

• Linux and Solaris also have default ACLs for new files

Steven M. Bellovin September 2, 2014 37

MAC versus DAC

• Who has the right to set file permissions?

• Discretionary Access Control (DAC) — the file owner can

set permissions

• Mandatory Access Control (MAC) — only the security

officer can set permissions

• Enforce site security rules

• Note: viruses and other malware change change DAC

permissions, but not MAC permissions

Steven M. Bellovin September 2, 2014 38

Implementing MAC

• Often side-by-side with DAC: system has both

• Processes need to pass both sets of permissions to access

files

• Or — can have a special ACL-changing attribute in an

ACL:

security officer.wheel p

• But — can security officer give him/herself privileges?

• In reality, MAC is often used for classification levels (next

class), rather than ACLs

Steven M. Bellovin September 2, 2014 39

Privileged Users

• Root or Administrator can override file permissions

• This is a serious security risk — there is no protection if a

privileged account has been compromised

• There is also no protection against a rogue superuser. . .

• Secure operating systems do not have the concept of

superusers

Steven M. Bellovin September 2, 2014 40

Database Access Control

• Often have their own security mechanisms

• Permit user logins, just like operating systems

• Some have groups as well

• Permissions are according to database concepts: protect

rows and columns

• Different types of operations: select, insert, update, delete,

and more

Steven M. Bellovin September 2, 2014 41

Databases versus OS Security

• The database has many objects in a single OS file

• The OS can control access to the file

• The DBMS has to control access to objects within the file

• The set of database users is not the same as the set of OS

users

Steven M. Bellovin September 2, 2014 42

Access Control Formalisms

• Access control can be modeled formally. What does this

buy us?

• There are theorems that can be proved

• For example, if ACLs permit negation there are undecidable

questions

Steven M. Bellovin September 2, 2014 43

Access Control Formalisms (cont.)

• For the general case:

• Model using a Turing machine.

• Turing machine enters a special state if the access control

is faulty.

• Contradiction!

Steven M. Bellovin September 2, 2014 44

