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Security Begins on the Host

• Even without a network, hosts must enforce the CIA trilogy

• Something on the host — the operating system aided by

the hardware — must provide those guarantees
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Access Control

• Hardware

• Software

– Operating systems

– Databases

– Other multi-access programs

• Distributed
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Hardware

• What is the minimum necessary?

• What do other mechanisms buy us?
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Minimum Functionality

• Protect the OS from applications

• Protect applications from each other

• Change state from application to OS

• Timer interrupt
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Why a Timer?

• Availability is a security feature

• Must prevent uncooperative applications from hogging CPU

• Not going to discuss this more here, but it’s a major topic

in W4118 (Operating Systems)
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Historical Mechanisms

• Single privileged mode bit — restrict ability to execute

certain instructions

• Memory protection

• Interrupts — hardware and software — cause state

transition
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What Are Privileged Instructions?

• Ability to do I/O without the OS’s intervention — allowing

that could bypass file permission checking

• Ability to manipulate timers

• Ability to access other programs’ memory without OS

intervention
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Example: IBM System/360 Mainframe

• Designed in the early 1960s

• Much of the architecture still in use. . .

• 4-bit protection key associated with each 4K block of

memory, plus read-protect bit

• Single “supervisor mode” bit

• 4-bit state key of 0 can write to anything

• But — operating systems of that time didn’t use the

hardware to its full capabilites
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Memory-Mapped Control

• On some machines, privileged operations work by memory

access

• If applications have no access to such memory, they can’t

do sensitive things

• But — must have way to enter privileged state
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Multics

• Virtual memory

• “Ring” structure — 8 different privilege levels (i386 has

rings, too)

• OS could use rings 0-3; applications could use 4-7.

• (Original design had 64 rings!)

• Each ring is protected against higher-numbered rings

• Special form of subroutine call to cross rings

• Most of the OS didn’t run in Ring 0
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What is the Advantage of Rings?

• A single bit is theoretically sufficient

• Assurance!

• Don’t need to trust all parts of the system equally

• “Principle of Least Privilege”
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Assurance

• How do you know something is secure

• Much harder to provide later than features

• A trustable secure system has to be designed that way from

the beginning: designed, document, coded, and tested —

and maybe proved
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Underlying Principles of Privilege

• Two basic approaches to privilege: identity and attribute

• Hardware protection is attribute: the state of various

registers controls what can and cannot be done

• Easier to manage in a single system
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What is the role of the OS?

• Protect itself

• Separate different applications

• More?
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Operating Systems and Hardware

• The hardware provides the minimum functionality

• The OS has to provide its own services on top of that

• Must manage access to I/O devices as well
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What Protections do Operating
Systems Provide?

• User authentication (why?)

• File protection

• Process protection

• Resource scheduling (CPU, RAM, disk space, etc)
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User Authentication

• (Much more on this later)

• Why authenticate users?

• Most operating system privileges are granted by identity,

not attributes

• Procedure:

Authenticate user

Grant access based on userid

Steven M. Bellovin September 2, 2014 18



File Permissions

• Besides user authentication, the most visible aspect of OS

security

• Read protection — provide confidentiality

• Write protection — provide integrity protection

• Other permissions as well
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Classical Unix File Permissions

• All files have “owners”

• All files belong to a “group”

• Users, when logged in, have one userid and several groupids.

• 3 sets of 3 bits: read, write, execute, for user, group, other

• (512 possible settings. Do they all make sense?)

• Written rwxrwxrwx

• 111 101 001: User has read/write/exec; group has

read/exec; other has exec-only

• Some counter-intuitive settings are very useful
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Permission-Checking Algorithm

if curr_user.uid == file.uid

check_owner_permissions();

else if curr_user.gid == file.gid

check_group_permissions();

else

check_other_permissions();

fi

Note the else clauses — if you own a file, “group” and “other”

permissions aren’t checked
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Execute Permission

• Why is it separate from “read”?

• To permit only execution

• Cannot copy the file

• Readable only by the OS, for specific purposes
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Directory Permissions

• “write”: create a file in the directory

• “read”: list the directory

• “execute”: trace a path through a directory
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Example: Owner Permissions

$ id

uid=54047(smb) gid=54047(smb) groups=0(wheel),3(sys),54047(smb)

$ ls -l not me

----r--r-- 1 smb wheel 29 Sep 12 01:35 not me

$ cat not me

cat: not me: Permission denied

I own the file but don’t have read permission on it
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Example: Directory Permissions

$ ls -ld oddball

dr--r--r-- 2 smb wheel 512 Sep 12 01:36 oddball

$ ls oddball

cannot get at

$ ls -l oddball

ls: cannot_get_at: Permission denied

$ cat oddball/cannot get at

cat: oddball/cannot get at: Permission denied

I can read the directory, but not trace a path through it to

oddball/cannot get at
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Deleting Files

• What permissions are needed to delete files?

• On Unix, you need write permission on the parent directory

• You can delete files that you can’t write. You can also

write to files that you can neither create nor delete

• Other systems make this choice differently

Steven M. Bellovin September 2, 2014 26



Historical Note

• Unix has never been fond of asking “do you really mean

that?”

• That said, at least as long ago as February 1973 the

original Bell Labs Unix rm command prompted if you tried

to delete a file you couldn’t write

• In other words, the Unix model is philosophically correct but

perhaps incorrect from a human factors perspective
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Access Control Lists

• 9-bit model not always flexible enough

• Many systems (Multics, Windows XP and later, Solaris,

some Linux) have more general Access Control Lists

• ACLs are explicit lists of permissions for different parties

• Wildcards are often used
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Sample ACL

smb.* rwx

4187-ta.* rwx

*.faculty rx

*.* x

Users “smb” and ‘4187-ta” have read/write/execute

permission. Anyone in group “faculty” can read or execute the

file. Others can only execute it.
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Order is Significant

With this ACL:

*.faculty rx

smb.* rwx

4187-ta.* rwx

*.* x

I would not have write access to the file
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MacOS ACLs
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Windows Vista ACLs
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Linux/Solaris ACLs

$ getfacl acl.pdf

# file: acl.pdf

# owner: smb

# group: smb

user::rw-

user:postfix:-w-

group::r--

group:landscape:--x

mask::rwx

other::r--

The standard Unix permissions are translated into ACL entries
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Setting File Permissions

• Where do initial file permssions come from?

• Who can change file permissions?
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Unix Initial File Permissions

• Unix uses “umask” — a set of bits to turn off when a

program creates a file

• Example: if umask is 022 and a program tries to create a

file with permissions 0666 (rw for user, group, and other),

the actual permissions will be 0644.

• Default system umask setting has a great effect on system

file security

• Set your own value in startup script; value inherited by child

processes
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Why Umask?

• Suppose files were always created with rw,r,r permissions

• What’s wrong with the application simply changing the file

permissions after creating the file?

• Race conditions
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Multics Initial File Permissions

• Directories contain “initial access control list” — values set

by default for new files

• Common setting:

smb.faculty rw

*.sysdaemon r

*.* -

• If group “sysdaemon” doesn’t have read permission, the file

can’t be backed up!

• Linux and Solaris also have default ACLs for new files
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MAC versus DAC

• Who has the right to set file permissions?

• Discretionary Access Control (DAC) — the file owner can

set permissions

• Mandatory Access Control (MAC) — only the security

officer can set permissions

• Enforce site security rules

• Note: viruses and other malware change change DAC

permissions, but not MAC permissions
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Implementing MAC

• Often side-by-side with DAC: system has both

• Processes need to pass both sets of permissions to access

files

• Or — can have a special ACL-changing attribute in an

ACL:

security officer.wheel p

• But — can security officer give him/herself privileges?

• In reality, MAC is often used for classification levels (next

class), rather than ACLs

Steven M. Bellovin September 2, 2014 39



Privileged Users

• Root or Administrator can override file permissions

• This is a serious security risk — there is no protection if a

privileged account has been compromised

• There is also no protection against a rogue superuser. . .

• Secure operating systems do not have the concept of

superusers
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Database Access Control

• Often have their own security mechanisms

• Permit user logins, just like operating systems

• Some have groups as well

• Permissions are according to database concepts: protect

rows and columns

• Different types of operations: select, insert, update, delete,

and more
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Databases versus OS Security

• The database has many objects in a single OS file

• The OS can control access to the file

• The DBMS has to control access to objects within the file

• The set of database users is not the same as the set of OS

users
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Access Control Formalisms

• Access control can be modeled formally. What does this

buy us?

• There are theorems that can be proved

• For example, if ACLs permit negation there are undecidable

questions
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Access Control Formalisms (cont.)

• For the general case:

• Model using a Turing machine.

• Turing machine enters a special state if the access control

is faulty.

• Contradiction!
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