
Cryptography

Key Management

• Where do keys come from?

• More precisely, we have to distinguish between long-lived keys and
session keys

• General solution: use long-lived key for authentication and to
negotiate session key

• Many different ways to do this

Steven M. Bellovin September 20, 2006 1



Cryptography

Desired Properties

• Alice and Bob want to end up with a shared session key K, with the
help of a key server S.

• They each want proof of the other’s identity

• They want to be sure the key is fresh

• A fresh key is one that hasn’t been used before, i.e., is not a replay

Steven M. Bellovin September 20, 2006 2



Cryptography

Why is Freshness Important?

• For stream ciphers, it’s crucial

• If too much traffic is encrypted with any key, it might help a
cryptanalyst

• If too much traffic is encrypted with any one key, it’s a very tempting
target for a cryptanalyst

• An old key may have somehow been compromised

Steven M. Bellovin September 20, 2006 3



Cryptography

Key Management for Symmetric Ciphers

• Simplest case: each pair of communicators has a shared key

• Doesn’t scale.

• Besides, cryptographically unwise — each key is used too much

• Need a Key Distribution Center (KDC)

Steven M. Bellovin September 20, 2006 4



Cryptography

Needham-Schroeder Protocol (1978)

A → S : A, B, NA (1)

S → A : {NA, B, KAB, {KAB, A}KBS
}KAS

(2)

A → B : {KAB, A}KBS
(3)

B → A : {NB}KAB
(4)

A → B : {NB − 1}KAB
(5)

Steven M. Bellovin September 20, 2006 5



Cryptography

Needham-Schroeder Protocol

S

A B

A, B, NA NA, B, KAB, KAB, A

KAB, A

NB

NB − 1

A − S

Keys: B − S

A − B

Steven M. Bellovin September 20, 2006 6



Cryptography

Explaining Needham-Schroeder

(1) Alice sends S her identity, plus a random nonce

(2) S’s response is encrypted in KAS, which guarantees its authenticity.
It includes a new random session key KAB, plus a sealed package
for Bob

(3) Alice sends the sealed package to Bob. Bob knows it’s authentic,
because it’s encrypted with KBS

(4) Bob sends his own random nonce to Alice, encrypted with the
session key

(5) Alice proves that she could read the nonce

Steven M. Bellovin September 20, 2006 7



Cryptography

Cryptographic Protocol Design is Hard

• Bob never proved his identity to Alice

• If KAB is ever compromised, the attacker can impersonate Alice
forever

• Denning and Sacco proposed a fix for this problem in 1981.

• In 1994, Needham found a flaw in their fix.

• In 1995, a new flaw was found in the public key version of the original
Needham-Schroeder protocol — in modern notation, that protocol is
only 3 messages.

• Cryptographic protocol design is hard. . .

Steven M. Bellovin September 20, 2006 8



Cryptography

Revisiting Diffie-Hellman

• A few days ago, we discussed the Diffie-Hellman algorithm, as a way
to generate session keys without prearrangement

• I (deliberately) omitted something: the protocol is unauthenticated

• That is, Alice doesn’t know if she’s talking to Bob or someone else

Steven M. Bellovin September 20, 2006 9



Cryptography

Attacking DH Exponential Key Exchange

Suppose we have a man-in-the-middle between Alice and Bob. . .

A → M : gx mod p

M → B : gz mod p

B → M : gy mod p

M → A : gz′ mod p

Alice and M share a key gxz mod p; Bob and M share a key gyz′ mod p.

When Alice sends a message towards Bob, M decrypts it, reads it and
perhaps modifies it, re-encrypts it, and sends it to Bob.

Diffie-Hellman key exchange provides no authentication — and if Alice or
Bob sent a password, M would read that, too.

Steven M. Bellovin September 20, 2006 10



Cryptography

Man-in-the-Middle Attacks

• An attacker who does more than just listen to communications

• Sits in the middle of a channel and relays messages back and forth

• Of course, the messages aren’t always relayed intact. . .

Steven M. Bellovin September 20, 2006 11



Cryptography

Authenticating Diffie-Hellman

• Alice and Bob — and perhaps M — engage in a Diffie-Hellman
exchange.

• Bob digitally signs a hash of the exchanged exponentials, and
transmits it; Alice does the same.

• M can’t tamper with digitally-signed messages, so they have to arrive
intact

• If there’s an attacker, Alice and Bob realize that the signed key
doesn’t match their own key, so they know there’s something wrong.

• (Station-to-station protocol)

Steven M. Bellovin September 20, 2006 12



Cryptography

Other Cryptographic Protocols

• Cryptographic protocols allow us to do many strange things, such as
signing a message you can’t see

• Too many to discuss in this class; here are a few small examples

Steven M. Bellovin September 20, 2006 13



Cryptography

Coin Flips

• How do you flip a coin on the Internet, without a trusted third party?

• Alice picks a random number x, and sends H(x) to Bob, where H is
a cryptographic hash function.

• Bob guesses if x is even or odd, and sends his guess to Alice.

• If Bob’s guess is right, the result is heads; if he’s wrong, the result is
tails.

• Alice discloses x. Both sides can verify the result. Alice can’t cheat,
because she can’t find an x′ such that H(x) = H(x′).

• Note: this protocol is crucially dependent on the lack of correlation
between the parity of x and the values of H(x), or Bob can cheat.

Steven M. Bellovin September 20, 2006 14



Cryptography

Strong Password Protocols

• Suppose a user has to supply a key

• Users can’t remember long random strings; they can remember
passwords

• Suppose we use some function F (P ), where P is the password

• The enemy intercepts {M}F (P ) and guesses at the password to
decrypt the message

• If M makes sense — if it has verifiable plaintext — the enemy knows
the guess was correct and can read all traffic

• We need a scheme that prevents password-guessing

Steven M. Bellovin September 20, 2006 15



Cryptography

Encrypted Key Exchange (EKE)

• Alice and Bob prepare Diffie-Hellman exponentials gx mod p and
gz mod p

• D-H exponentials are (approximately) uniformly-distributed random
numbers in [0, p − 1]

• Alice and Bob then encrypt the exponentials with Alice’s password
and transmit them:

A → B : {gx mod p}P

B → A : {gy mod p}P

• If the attacker guesses wrong about P , he gets a random number

• If he guesses right, he gets a random-looking number

• The only way to tell is to solve the discrete log problem!

Steven M. Bellovin September 20, 2006 16



Cryptography

Kerberos

• Originally developed at MIT; now an essential part of Windows
authentication infrastructure.

• Designed to authenticate users to servers

• Users must use their password as their initial key — and must not be
forced to retype it constantly

• Based on Needham-Schroeder, with timestamps to limit key lifetime

Steven M. Bellovin September 20, 2006 17



Cryptography

“Kerberos” in Greek Mythology

Kerberos ; also spelled Cerberus. n. The watch dog of Hades, whose
duty it was to guard the entrance—against whom or what does not clearly
appear; . . . it is known to have had three heads. . .

—Ambrose Bierce, The Enlarged Devil’s Dictionary

Steven M. Bellovin September 20, 2006 18



Cryptography

Design Goals

• Users only have passwords to authenticate themselves

• The network is completely insecure

• It’s possible to protect the Kerberos server

• The workstations have not been tampered with (dubious!)

Steven M. Bellovin September 20, 2006 19



Cryptography

Resources Protected

• Workstation login

• Network access to home directory

• Printer

• IM system

• Remote login

• Anything else that requires authentication

Steven M. Bellovin September 20, 2006 20



Cryptography

Principals

• A Kerberos entity is known as a principal

• Could be a user or a system service

• Principal names are triples: 〈primary name, instance, realm〉

• Examples: username@some.domain.name,
somehost/lpr@other.domain

• The realm identifies the Kerberos server

Steven M. Bellovin September 20, 2006 21



Cryptography

How Kerberos Works

• Users present tickets — cryptographically sealed messages with
session keys and identities — to obtain a service.

• Use Needham-Schroeder (with password as Alice’s key) to get a
Ticket-Granting Ticket (TGT); this ticket (and the associated key) are
retained for future use during its lifetime.

• Use the TGT (and TGT’s key) in a Needham-Schroeder dialog to
obtain keys for each actual service

Steven M. Bellovin September 20, 2006 22



Cryptography

Shared Secrets

• Everyone shares a secret with the Kerberos KDC

• For users, this is their password (actually, a key derived from the
password)

• The KDC is assumed to be secure and trustworthy; anything it says
can be believed

Steven M. Bellovin September 20, 2006 23



Cryptography

Kerberos Data Flow

User

KDC

TGS

TGT Request (1)

Encrypted TGT (2)

Ticket Request, TGT, Auth (3)

Encrypted Ticket (4)

Service

Ticket, Auth (5) Optional Server Response (6)

Steven M. Bellovin September 20, 2006 24



Cryptography

Getting a Ticket-Granting Ticket (TGT)

• The user sends its principal name to the Kerberos KDC

• The KDC responds with

{Kc,tgs, {Tc,tgs}Ktgs
}Kc

• That is, it contains a session key Kc,tgs and a TGT encrypted with a
key known only to the KDC

• The ticket contains

{tgs, c, addr, timestamp, lifetime, Kc,s}Ktgs

• It has the service name (tgs), the principal’s name, its IP address, the
validity period, and the session key Kc,tgs sent to the client

• Kc is the user’s password, known to the user and the KDC

Steven M. Bellovin September 20, 2006 25



Cryptography

Who Knows What Now?

• The user and the KDC know Kc; the user use it to decrypt {Kc,tgs}Kc

and recover Kc,tgs

• Only the KDC knows Ktgs; therefore, anything encrypted with that
key could only have been created by the KDC

• The user will use Kc,tgs plus the ticket-granting ticket to obtain more
credentials

Steven M. Bellovin September 20, 2006 26



Cryptography

Using the TGT

• The client uses the TGT to obtain tickets for other services

• To get a ticket for service s — say, email access — it sends s (email),
the ticket, and an authenticator to the KDC

• The KDC uses this information to construct a service ticket

Steven M. Bellovin September 20, 2006 27



Cryptography

Authenticators

• Authenticators prove two things: that the client knows Kc,s, and that
the ticket is fresh

• An authenticator for a service s contains

{c, addr, timestamp}Kc,s

• That is, it contains the client name and IP address, plus the current
time, encrypted in the key associated with that ticket

• For a ticket-granting ticket, s is the tgs

Steven M. Bellovin September 20, 2006 28



Cryptography

Processing the Ticket Request

• The KDC decrypts the ticket to recover Kc,tgs

• It uses that to decrypt the authenticator

• It verifies the IP address and the timestamp (permissible clock skew
is typically a few minutes)

• If everything matches, it knows that the request came from the real
client, since only it would have access to the Kc,tgs that was in the
ticket

• It then sends a service ticket back to the client

Steven M. Bellovin September 20, 2006 29



Cryptography

Service Tickets

• Service tickets are almost identical to ticket-granting tickets

• The differences is that they have the name of a different service —
say, “email” — rather than the ticket-granting service

• They’re encrypted in a key shared by the KDC and the service

Steven M. Bellovin September 20, 2006 30



Cryptography

Using Service Tickets

• The client sends the service ticket and an authenticator to the serivce

• The service decrypts the ticket, using its own key

• The service knows it’s genuine, because only the KDC knows the key
used to produce it

• The service verifies that the ticket is for it and not some other service

• It uses the enclosed key to decrypt and verify the authenticator

• The net result is that the service knows the client’s principal name,
extracted from the ticket

Steven M. Bellovin September 20, 2006 31



Cryptography

Authentication, Not Authorization

• Kerberos is an authentication service

• It does not (usually) provide authorization

• The services know a genuine name for the client, vouched for by the
KDC

• They then make their own authorization decision based on this name

Steven M. Bellovin September 20, 2006 32



Cryptography

Bidirectional Authentication

• Sometimes, the client wants to be sure of the server’s identity

• It asks the server to prove that it, too, knows the session key

• The server replies with {timestamp + 1}Kc,s
using the same

timestamp as was in the authenticator

Steven M. Bellovin September 20, 2006 33



Cryptography

Ticket Lifetime

• TGTs typically last about 8–12 hours — the length of a login session

• Service tickets can be long- or short-lived, but don’t outlive the TGT

• Live tickets are cached by the client

• When service tickets expire, they’re automatically and transparently
renewed

Steven M. Bellovin September 20, 2006 34



Cryptography

Inter-Realm Tickets

• A ticket from one realm can’t be used in another, since a KDC in one
realm doesn’t share secrets with services in another realm

• Realms can issue tickets to each other

• A client can ask its KDC for a TGT to another realm’s KDC

• The remote realm trusts the user’s KDC to vouch for the user’s
identity

• It then issues serivce tickets with the original realm’s name for the
principal, not its own realm name

• As always, services use the principal name for authorization decisions

Steven M. Bellovin September 20, 2006 35



Cryptography

Putting Authorization into Tickets

• Under certain circumstances, tickets can contain authorization
information known or supplied to the KDC

• Windows KDCs use this, to centralize authorization data

• (As a result, Windows and open source Kerberos KDCs don’t
interoperate well. . . )

• Users can supply some authorization data, too, to restrict what other
services do with proxy tickets

Steven M. Bellovin September 20, 2006 36



Cryptography

Proxy Tickets

• Suppose a client wants to print a file

• The print spooler doesn’t want to copy the user’s file; that’s expensive

• The user obtains a proxy ticket granting the print spooler access to its
files

• The print spooler uses that ticket to read the user’s file

Steven M. Bellovin September 20, 2006 37



Cryptography

Restricting the Print Spooler

• The client doesn’t want the spooler to have access to all of its files

• It lists the appropriate file names in the proxy ticket request; the KDC
puts that list of names into the proxy ticket

• When the print spooler presents the proxy ticket to a file server, it will
only be given those files

• Note: the file server must verify that the client has access to those
files!

Steven M. Bellovin September 20, 2006 38



Cryptography

Kerberizing Applications

• Replace (or supplement) existing authentication mechanisms with
something that uses Kerberos

• Add authorization check

• If necessary (and it probably is, these days), change all network I/O to
use the Kerberos session key to encrypt and authenticate all
messages

Steven M. Bellovin September 20, 2006 39



Cryptography

Limitations of Kerberos

• Ticket cache security

• Password-guessing

• Subverted login command

Steven M. Bellovin September 20, 2006 40



Cryptography

Ticket Cache Security

• Where are cached tickets stored?

• Often in /tmp — is the OS protection good enough?

• Less of an issue on single-user workstations; often a threat on
multi-user machines

• Note: /tmp needs to be a local disk, and not something mounted via
NFS. . .

Steven M. Bellovin September 20, 2006 41



Cryptography

Password-Guessing

• Kerberos tickets have verifiable plaintext

• An attacker can run password-guessing programs on intercepted
ticket-granting tickets

• (Mike Merritt and I invented EKE while studying this problem with
Kerberos.)

• Kerberos uses passphrases instead of passwords

• Does this make guessing harder? No one knows

Steven M. Bellovin September 20, 2006 42



Cryptography

It’s Worse Than That

• On many Kerberos systems, anyone can ask the KDC for a TGT

• There’s no need to eavesdrop to get them — you can get all the TGTs
you want over the Internet!

• Solution: preauthentication

• The initial request includes a timestamp encrypted with Kc

• It’s still verifiable plaintext, but collecting TGTs becomes harder again

Steven M. Bellovin September 20, 2006 43



Cryptography

Subverting Login

• No great solutions!

• Keystroke loggers are a real threat today

• Some theoretical work on secure network booting

• Perhaps use the Trusted Computing mechanisms to protect
passphrase entry? Unclear it it will really help

Steven M. Bellovin September 20, 2006 44


