

Introduction

What is this Course?
Topics
How to Think About
Insecurity...

Administrivia

Network Security

Course Outline

Introduction

What is this Course?

Introduction

What is this Course?

Topics

How to Think About Insecurity. . .

Administrivia

Network Security

- Network security
- Mostly not true primary focus is security of networked applications
- Some true network security protect the network infrastructure

Topics

Introduction

What is this Course?

Topics

How to Think About Insecurity. . .

Administrivia

Network Security

- Secure network protocol design
- Using cryptography (COMS W4261 not a prerequisite!)
- The role of correct software

How to Think About Insecurity...

Introduction

What is this Course?
Topics

How to Think About Insecurity...

Administrivia

Network Security

- The bad guys don't follow the rules
- To understand how to secure a system, you have to understand what sort of attacks are possible
- Note that is *not* the same as actually launching them...

Introduction

Administrivia

Course Structure

Prerequisites

Grading

Readings

Logistics

Talking to Me

TAs

Lectures

Homeworks

Programming

Assignments

Homework 0

Co-operation versus

Dishonesty

The Ethics of

Security

Responsibility

Practical Focus

The CLIC Lab

Network Security

Course Outline

Administrivia

Course Structure

Introduction

Administrivia

Course Structure

Prerequisites

Grading

Readings

Logistics

Talking to Me

TAs

Lectures

Homeworks

Programming

Assignments

Homework 0

Co-operation versus

Dishonesty

The Ethics of

Security

Responsibility

Practical Focus

The CLIC Lab

Network Security

- Lectures
- Approximately five homework assignments, all with programming and non-programming components
- Midterm, final

Prerequisites

Introduction

Administrivia

Course Structure

Prerequisites

Grading

Readings

Logistics

Talking to Me

TAs

Lectures

Homeworks

Programming

Assignments

Homework 0

Co-operation versus

Dishonesty

The Ethics of

Security

Responsibility

Practical Focus

The CLIC Lab

Network Security

Course Outline

■ COMS W4119 — Networking

- Network layers
- Basics of TCP/IP
- Difference between IP, ICMP, TCP, and UDP
- Port numbers and sequences numbers
- Some understanding of the TCP flags
- COMS W3137 or W3139
- Understand how to use "make", the compiler, etc.
- C or Java

Grading

Introduction

Administrivia

Course Structure

Prerequisites

Grading

Readings

Logistics

Talking to Me

TAs

Lectures

Homeworks

Programming

Assignments

Homework 0

Co-operation versus

Dishonesty

The Ethics of

Security

Responsibility

Practical Focus

The CLIC Lab

Network Security

Course Outline

Midterm 20%

Final 30%

Homeworks 50%

Exams will be open book. Yes, I curve.

Readings

Introduction

Administrivia

Course Structure

Prerequisites

Grading

Readings

Logistics

Talking to Me

TAs

Lectures

Homeworks

Programming

Assignments

Homework 0

Co-operation versus

Dishonesty

The Ethics of

Security

Responsibility

Practical Focus

The CLIC Lab

Network Security

- Kaufman, Perlman, and Speciner. Network Security: Private Communication in a Public World, Second Edition, Prentice Hall PTR, 2002, ISBN 0130460192. Required.
- Cheswick, Bellovin, and Rubin. Firewalls and Internet Security: Repelling the Wily Hacker, Second Edition, Addison-Wesley Professional, 2003, ISBN 020163466X. (Recommended)
- Occasional papers

Logistics

Introduction

Administrivia

Course Structure

Prerequisites

Grading

Readings

Logistics

Talking to Me TAs

Lectures

Homeworks

Programming

Assignments

Homework 0

Co-operation versus

Dishonesty

The Ethics of

Security

Responsibility

Practical Focus

The CLIC Lab

Network Security

- For grading issues, approach the TA within two weeks; if you don't receive a satisfactory answer, contact me.
- For issues relating to *this class*, email smb+4180@cs...
- That lets me auto-sort class-related mail and keep better track of things
- My office hours are posted; I try to note (too frequent) changes because of my travel schedule

Talking to Me

Introduction

Administrivia

Course Structure

Prerequisites

Grading

Readings

Logistics

Talking to Me

TAs

Lectures

Homeworks

Programming

Assignments

Homework 0

Co-operation versus

Dishonesty

The Ethics of

Security

Responsibility

Practical Focus

The CLIC Lab

Network Security

- Drop by, just to talk
- You don't need to be in trouble to talk with me...
- If my office door is open, c'mon in
- But I travel too much

TAs

Introduction

Administrivia

Course Structure

Prerequisites

Grading

Readings

Logistics

Talking to Me

TAs

Lectures

Homeworks

Programming

Assignments

Homework 0

Co-operation versus

Dishonesty

The Ethics of

Security

Responsibility

Practical Focus

The CLIC Lab

Network Security

- Elli Androulaki <elli@cs...>
- TBA

Lectures

Introduction

Administrivia

Course Structure

Prerequisites

Grading

Readings

Logistics

Talking to Me

TAs

Lectures

Homeworks Programming Assignments

Homework 0 Co-operation versus

Dishonesty

The Ethics of Security

Responsibility

Practical Focus

The CLIC Lab

Network Security

- I prepare slides for each class, and upload them shortly before class time
- Slides (and other information) is uploaded both to Courseworks and to my web page
- Well, occasionally they're uploaded shortly after class...
- Because the class is being recorded for CVN, you'll be able to watch any lectures you've missed.
- General access to the videos starts after the add/drop period ends

Homeworks

Introduction

Administrivia

Course Structure

Prerequisites

Grading

Readings

Logistics

Talking to Me

TAs

Lectures

Homeworks

Programming Assignments

Homework 0 Co-operation versus

Dishonesty

The Ethics of Security

Responsibility

Practical Focus

The CLIC Lab

Network Security

- A lot of it...
- As noted, approximately five homework assignments
- Homeworks are designed for practice, teaching, and evaluation
- Homeworks must be submitted electronically by the start of class
- Homeworks received later that day lose 5%, the next day 10%, two days late 20%, three days late 30%; after that, zero credit
- Exceptions granted only for unforeseeable events. Workload, day job, etc., are quite foreseeable.

Programming Assignments

Introduction

Administrivia

Course Structure

Prerequisites

Grading

Readings

Logistics

Talking to Me

TAs

Lectures

Homeworks

Programming Assignments

Homework 0 Co-operation versus

Dishonesty

The Ethics of

Security

Responsibility

Practical Focus

The CLIC Lab

Network Security

- All programming assignments must be done in C or Java
- Assignments will involve socket programming and use of cryptographic libraries — see HW0
- All inputs must be checked for validity and proper values and lengths bugs are the major source of security problems

Homework 0

Introduction

Administrivia

Course Structure

Prerequisites

Grading

Readings

Logistics

Talking to Me

TAs

Lectures

Homeworks

Programming

Assignments

Homework 0

Co-operation versus

Dishonesty

The Ethics of

Security

Responsibility

Practical Focus

The CLIC Lab

Network Security

- Simple socket exercise
- Not collected, not graded, completely optional
- But it will be a useful base for another assignment
- It's also a refresher exercise for you on socket programming

Co-operation versus Dishonesty

Introduction

Administrivia

Course Structure

Prerequisites

Grading

Readings

Logistics

Talking to Me

TAs

Lectures

Homeworks

Programming

Assignments

Homework 0

Co-operation versus Dishonesty

The Ethics of Security

Responsibility

Practical Focus

The CLIC Lab

Network Security

- Discussing homework with others is encouraged
- All programs and written material must be individual work unless otherwise instructed
- Please use appropriate file permission mechanisms to protect your homework. (Looking at other people's work is not allowed.)
- Zero tolerance for cheating or "outsourced homework"
- See the department's academic honesty policy: http://www.cs.columbia.edu/education/honesty. You are responsible for following it

The Ethics of Security

Introduction

Administrivia

Course Structure

Prerequisites

Grading

Readings

Logistics

Talking to Me

TAs

Lectures

Homeworks

Programming

Assignments

Homework 0 Co-operation versus Dishonesty

The Ethics of Security

Responsibility
Practical Focus
The CLIC Lab

Network Security

- Taking a computer security class is not an excuse for hacking
- "Hacking" is any form of unauthorized access, including exceeding authorized permissions
- The fact that a file or computer is not properly protected is no excuse for unauthorized access
- If the owner of a resource invites you to attack it, such use is authorized
- For more details, see http://www.columbia.edu/cu/policy/network_use.ht
- Absolutely no Trojan horses, back doors, or other malicious code in homework assignments
- No, I'm not joking

Responsibility

Introduction

Administrivia

Course Structure

Prerequisites

Grading

Readings

Logistics

Talking to Me

TAs

Lectures

Homeworks

Programming

Assignments

Homework 0

Co-operation versus

Dishonesty

The Ethics of Security

Responsibility

Practical Focus

The CLIC Lab

Network Security

- You're all adults
- You're all responsible for your own actions
- If there's something missing, you have to tell me

Practical Focus

Introduction

Administrivia

Course Structure

Prerequisites

Grading

Readings

Logistics

Talking to Me

TAs

Lectures

Homeworks

Programming

Assignments

Homework 0

Co-operation versus

Dishonesty

The Ethics of

Security

Responsibility

Practical Focus

The CLIC Lab

Network Security

- This is not a pure academic-style OS course
- You'll be experimenting with real security holes
- A lot of (in)security is about doing the unexpected
- The ability to "think sideways" is a big advantage

The CLIC Lab

Introduction

Administrivia

Course Structure

Prerequisites

Grading

Readings

Logistics

Talking to Me

TAs

Lectures

Homeworks

Programming

Assignments

Homework 0

Co-operation versus

Dishonesty

The Ethics of

Security

Responsibility

Practical Focus

The CLIC Lab

Network Security

- All programs must run on the CLIC machines
- Programs that don't compile on those machines receive zero credit
- You need a CS account to use CLIC; see https://www.cs.columbia.edu/~crf/accounts/
- Some of the CLIC machines are for in-person use; others can only be accessed remotely
- New policy: no food or drink in the CLIC lab

Introduction

Administrivia

Network Security

Goals

Dichotomy

Anarchic Networks Bellovin's Laws of

Networking

Benign Failures

Trust Nothing

Unproductive

Attitudes

Better Attitudes

Network Security

Tools

Protocol Design

Buggy Software

Course Outline

Network Security

Goals

Introduction

Administrivia

Network Security

Goals

Dichotomy

Anarchic Networks Bellovin's Laws of Networking

Benign Failures

Trust Nothing Unproductive Attitudes

Better Attitudes Network Security Tools

Protocol Design

Buggy Software

- Usual security trinity: confidentiality, integrity, availability
- Must ensure these in two domains: over-the-wire and on the host (for network-connected applications)
- Strategies are very different!

Dichotomy

Introduction

Administrivia

Network Security

Goals

Dichotomy

Anarchic Networks Bellovin's Laws of Networking

Benign Failures

Trust Nothing Unproductive

Attitudes

Better Attitudes Network Security Tools

Protocol Design

Buggy Software

- The host is (or can be) well-controlled
- There are well-developed authentication and authorization models
- There is a strong notion of "privileged" state, as well as what programs can use it
- None of that is true for the network

Anarchic Networks

Introduction

Administrivia

Network Security

Goals

Dichotomy

Anarchic Networks

Bellovin's Laws of Networking

Benign Failures

Trust Nothing Unproductive

Attitudes

Better Attitudes Network Security Tools

Protocol Design

Buggy Software

- More or less anyone can (and does) connect to the network
- Connectivity can only be controlled in very small, well-regulated environments, and maybe not even then
- Different operating systems have different or no — notions of userIDs and privileges
- As a consequence, notions of privilege are lacking

Bellovin's Laws of Networking

Introduction

Administrivia

Network Security

Goals

Dichotomy

Anarchic Networks

Bellovin's Laws of Networking

Benign Failures

Trust Nothing

Unproductive

Attitudes

Better Attitudes

Network Security

Tools

Protocol Design

Buggy Software

- 1. Networks interconnect
- 2. Networks *always* interconnect
- 3. Interconnections happen at the edges, not the center

Benign Failures

Introduction

Administrivia

Network Security

Goals

Dichotomy

Anarchic Networks Bellovin's Laws of Networking

Benign Failures

Trust Nothing
Unproductive
Attitudes
Better Attitudes
Network Security
Tools

Protocol Design

Buggy Software

- On top of all that, most network failures are benign
- You have to program allowing for such failures: data corruption, timeouts, dead hosts, routing problems, etc.
- Rule of thumb: anything that can happen by accident can happen by malice only more so

Trust Nothing

Introduction

Administrivia

Network Security

Goals

Dichotomy

Anarchic Networks Bellovin's Laws of Networking

Benign Failures

Trust Nothing

Unproductive Attitudes

Better Attitudes Network Security Tools

Protocol Design

Buggy Software

- A host can trust nothing that comes over the wire
- Any desired protections have to be supplied explicitly
- Perhaps there's a middleware layer supplying the protection — but such middleware is based on the same principles

Unproductive Attitudes

Introduction

Administrivia

Network Security

Goals

Dichotomy

Anarchic Networks Bellovin's Laws of Networking

Benign Failures

Trust Nothing

Unproductive Attitudes

Better Attitudes Network Security Tools

Protocol Design

Buggy Software

- "Why would anyone ever do *that*?"
- "That attack is too complicated"
- "No one knows how this system works, so they can't attack it"

Better Attitudes

Introduction

Administrivia

Network Security

Goals

Dichotomy

Anarchic Networks Bellovin's Laws of Networking

Benign Failures

Trust Nothing Unproductive Attitudes

Better Attitudes

Network Security Tools

Protocol Design

Buggy Software

- "Programming Satan's Computer" (Ross Anderson)
- "Assume that serial number 1 of any device is delivered to the enemy
- "You hand your packets to the enemy to deliver; you receive all incoming packets from the enemy

Network Security Tools

Introduction

Administrivia

Network Security

Goals

Dichotomy

Anarchic Networks Bellovin's Laws of

Networking

Benign Failures

Trust Nothing

 ${\sf Unproductive}$

Attitudes

Better Attitudes

Network Security
Tools

Protocol Design

Buggy Software

- Cryptography
- Network-based access control (firewalls and more)
- Monitoring
- Paranoid design

Protocol Design

Introduction

Administrivia

Network Security

Goals

Dichotomy

Anarchic Networks Bellovin's Laws of Networking

Benign Failures

Trust Nothing Unproductive Attitudes

Better Attitudes Network Security Tools

Protocol Design

Buggy Software

- Leave room for crypto and authentication
- Make sure all sensitive fields are protectable
- Make authentication bilateral
- Figure out the proper authorization
- Defend against eavesdropping, modification, deletion, replay, and combinations thereof

Buggy Software

Introduction

Administrivia

Network Security

Goals

Dichotomy

Anarchic Networks Bellovin's Laws of Networking

Benign Failures

Trust Nothing Unproductive Attitudes

Better Attitudes Network Security Tools

Protocol Design

Buggy Software

- Most netwrok security holes are due to buggy code
- A buggy network-connected program is an insecure one
- Correct coding counts for a lot

Introduction

Administrivia

Network Security

Course Outline

Introduction Applications Lower Layers Information Availability

Introduction

Introduction

Administrivia

Network Security

Course Outline

Introduction

Applications

Lower Layers

In formation

Availability

- Attacks and threats
- Cryptography overview
- Network authentication and key management
- Kerberos
- SSL

Applications

Introduction

Administrivia

Network Security

Course Outline

Introduction

Applications

Lower Layers Information Availability

- Web security
- Email security and phishing
- Network storage
- Secure shell

Lower Layers

Introduction

Administrivia

Network Security

Course Outline

Introduction

Applications

Lower Layers

Information Availability

- IPsec
- Firewalls
- Wireless
- Protocol design

Information

Introduction

Administrivia

Network Security

Course Outline

Introduction

Applications

Lower Layers

Information

Availability

- Intrusion Detection
- Network scans
- Privacy

Availability

Introduction

Administrivia

Network Security

Course Outline

Introduction

Applications

Lower Layers

Information

Availability

- Worms
- Denial of service
- Network infrastructure