
Public Key Cryptography

• Ciphers such as AES and DES are known as conventional,
symmetric algorithms, or secret key algorithms

• In such algorithms, K = K−1, i.e., the encryption key and the
decryption key are the same

• In public key or asymmetric cryptography, K 6= K−1. Furthermore,
given K it is infeasible to find K−1

Steven M. Bellovin October 3, 2005 1

The History of Public Key Cryptography

• Generally credited to Diffie and Hellman’s paper “New Directions in
Cryptography” (1976)

• Remarkable paper — created the academic field of cryptography

• However — public key crypto was actually invented by the British in
1970, under the name “Non-Secret Encryption”

• Some claim that it was actually invented by the Americans in the
mid-1960s to control nuclear weapons

• See the reading list for today

Steven M. Bellovin October 3, 2005 2

The Purpose of Public Key Cryptography

• If Alice and Bob want to exchange secret messages, they first have to
share a key

• What if they’ve never met?

• What if they have exchanged keys, but run out?

• Key-handling is hard

Steven M. Bellovin October 3, 2005 3

Key-Handling

. . . the judge asked the prosecution’s expert witness: “Why is it necessary
to destroy yesterday’s . . . [key] . . . list if it’s never going to be used again?”
The witness responded in shock: A used key, Your Honor, is the most
critical key there is. If anyone can gain access to that, they can read your
communications.”

Steven M. Bellovin October 3, 2005 4

The Problem of Key-Handling

• Reusing keys is dangerous — many cryptanalytic attacks work by
looking for key reuse

• Friedman’s “Index of Coincidence” detects overlap from just the
ciphertext of conventional ciphers.

• One of the ways Enigma was attacked: the British captured a German
weather observation ship that had the next several months of keys
☞ Note the other mistake: putting general-purpose keys in a
vulnerable place

• The “Venona” project: the U.S. read years of Soviet communications
when they discovered that the Soviets had reused one-time pads

Steven M. Bellovin October 3, 2005 5

One-Time Pads

• As noted last time for stream ciphers, must never be reused

• Producing so much true-random keying material is a strain

• During war-time, the Soviets couldn’t keep up

• Sometimes usable for point-to-point communication

• Doesn’t work well in groups: n2 keying problem. Worse yet, every set
of keys for a one-time pad must be long enough to handle the
maximum length of messages you’ll ever send

• Theoretically unbreakable but practically useless

Steven M. Bellovin October 3, 2005 6

The Solution: Public-Key Cryptography

• Alice publishes her encryption key K

• This isn’t secret; anyone can know it

• Glaring example: the Mossad—Israel’s Secret Intelligence
Service—has a web page you can use to talk to them. The server
uses public key cryptography

Steven M. Bellovin October 3, 2005 7

A First Approximation

• Alice has a public key KA, which she publishes, and a private key
K−1

A , which she keeps secret

• Bob wants to send her a message M

• Bob looks up her key and sends {M}KA

• Alice uses K−1
A to calculate {{M}KA

}KA
−1 = M

Steven M. Bellovin October 3, 2005 8

That’s Too Expensive

• All known public key algorithms are far more expensive than
symmetric algorithms

• The most common ones rely on exponentiation of very large numbers

• New ones (elliptic curve cryptography) is cheaper, but still expensive

Steven M. Bellovin October 3, 2005 9

A Better (But Not Good) Approach

• Alice has a public key KA, which she publishes, and a private key
K−1

A , which she keeps secret

• Bob wants to send her a message M

• Bob looks up her key

• Bob generates a random symmetric session key KS and sends
{KS}KA

, {M}KS

• That is, you use public key cryptography only to encrypt the session
key. The session key is used for all bulk data.

• Alice uses K−1
A to calculate {{KS}KA

}KA
−1 = KS

• Alice uses KS to calculate {{M}KS
}KS

−1 = M

Steven M. Bellovin October 3, 2005 10

Why Isn’t it Good?

• Bob doesn’t know who sent the message

• Bob doesn’t know that KS is fresh, i.e., not previously used

• (Actually doing public key encryption is tricky)

Steven M. Bellovin October 3, 2005 11

RSA

• Pick two large primes, p and q

• Let n = pq

• Pick two keys, e and d, such that ed ≡ 1 mod (p − 1)(q − 1)

• e is the encryption (or public) key; d is the decryption (or private) key

• Encryption: C ≡ Me mod n

• Decryption: M ≡ Cd mod n

• That is, (Me)d ≡ M mod n

• Strength rests on difficulty of factoring n

Steven M. Bellovin October 3, 2005 12

Huh?

• Remarkably, checking the primality of a large number can be done
efficiently

• However, there are no known efficient algorithms for factoring large
numbers

• For efficiency, usually e = 3

• Given e, p, q, calcuating d is easy via Euclid’s Algorithm

• If we could factor n, it is therefore easy to find d

• It is unknown if there is a way to recover d without factoring n

• All of this follows from (reasonably) elementary number theory

Steven M. Bellovin October 3, 2005 13

Turning it Around

• What if we encrypt with d?

• Why not? The equations are symmetric

• Only the possesor of the private key d can calculate Md mod n

• But e is public, so anyone can calculate (Md)e mod n ≡ M

• This is known as a digital signature

Steven M. Bellovin October 3, 2005 14

Digital Signatures

• Only the key owner can calculate them

• Anyone can verify them

• Any change to the message will result in a different signature value

Steven M. Bellovin October 3, 2005 15

History of Digital Signatures

• The British did not invent digital signatures, only public key encryption

• There is reason to suspect that the Americans invented digital
signatures but not public key encryption

• Diffie and Hellman invented both, but failed in an attempt to design
suitable algorithms

• They came agonizingly close — they had the equation, but with a
prime modulus

• It took Rivest, Shamir, and Adleman to solve both problems

Steven M. Bellovin October 3, 2005 16

Non-Repudiation

• Digital signatures provide non-repudiation

• “protection against false denial of involvement in a communication”
[RFC 2828]

• Since anyone can verify the signature, a judge can, too

Steven M. Bellovin October 3, 2005 17

Digital versus Physical Signatures

• Physical signatures are strongly bound to the signer, and weakly
bound to the message

• Digital signatures are strongly bound to the message, and weakly
bound to the signer

• What if the private key leaks? What if the signer deliberately leaks
the private key, to provide deniability?

Steven M. Bellovin October 3, 2005 18

Large Primes

• How large is “large”?

• Today, people commonly use 1024-bit moduli

• There are published designs for a $1,000,000 machine that can factor
a 1024-bit key in a year

• As far as is known, no one has built such a thing, but. . .

• How long must the information remain secret? How long must a
digital signature be verifiable? Mortgages commonly last for 30 years

• Prudence suggests 2048 or 3072-bit keys

Steven M. Bellovin October 3, 2005 19

The RSA Challenge

• A challenge encryption appeared in Scientific American in 1977

• The modulus was 129 digits, or 429 bits

• A large distributed effort solved in in 1993:
THE MAGIC WORDS ARE SQUEAMISH OSSIFRAGE

Steven M. Bellovin October 3, 2005 20

Actually Using RSA

• There are many traps here, both obvious and subtle

• Example: let “yes” = 1, “no” = 0

• Encrypt your answer with RSA

• Oops. . .

• Must use mathematically sound padding. (Possible approach:
Encrypt 1023 random bits, plus one bit of message)

Steven M. Bellovin October 3, 2005 21

Timing Attacks

• 1-bits in the exponent take longer than 0-bits (can shift over the 0-bits)

• By having your target decrypt suitable RSA messages, you can learn
where the 1-bits are

• Implemented in 2003 by Boneh and Brumley against web servers

Steven M. Bellovin October 3, 2005 22

Common Objections

• The NSA can factor RSA moduli

• Who knows? But they use RSA, too. Besides, factoring has been a
subject of mathematical attention for > 350 years

• The NSA can build a catalog of primes

• By the Prime Number Theorem, there are ≈ n/ logn primes less
than n. For 512-bit p and q, that is about 10151. Even NSA doesn’t
have that much disk space.

• It’s magic and can’t work. . .

Steven M. Bellovin October 3, 2005 23

I Cheated

• For encryption, I said “use symmetric algorithms; use RSA for the
session key”

• For digital signatures, I said “sign the message”

• It’s still too expensive to do that

• We need cryptographic hash functions

• We sign H(M), not M

Steven M. Bellovin October 3, 2005 24

Cryptogrpaphic Hash Functions

• Must be reasonably cheap

• Must take an arbitrary-length message and produce a fixed-length
output

• Must be impossible to forge signatures by attacking the hash function

Steven M. Bellovin October 3, 2005 25

Properties of Cryptogrpaphic Hash Functions

Collision resistance It is computationally infeasible to find x, y, x 6= y

such that H(x) = H(y)

Preimage resistance Given an output value y, it is computationally
infeasible to find x such that H(x) = y

Second preimage resistance Given an input x, it is computationally
infeasible to find x′ such that H(x) = H(x′)

Steven M. Bellovin October 3, 2005 26

Hash Function Failures

• Second preimage resistance: forge a new document or message to
match any hash

• Preimage resistance: similar, but you don’t get to see the input
message

• Collision: trick someone into signing one document; show the other to
the judge — see http://th.informatik.uni-mannheim.de/

people/lucks/HashCollisions

Steven M. Bellovin October 3, 2005 27

Modern Hash Functions

• MD5 (128 bits) — Invented by Rivest

• SHA-1 (160 bits) — Invented by NSA; standardized by NIST

☞ SHA-0 wasn’t as strong as it should have been; NSA made a mistake

• SHA-256, SHA-384, SHA-512 — Stronger variants of SHA-1

• Other, less common ones: RIPEMD160 (160-bit), Whirlpool (512 bits)

Steven M. Bellovin October 3, 2005 28

Status

• Only MD5 and SHA-1 are widely used

• SHA-256, SHA-384, SHA-512 are stronger (and slower) variants

• Last year, a collision-finding algorithm for MD5 was published by
Wang et al.

• This year, she showed that SHA-1 is much weaker than it should be

• Can we switch? Should we?

Steven M. Bellovin October 3, 2005 29

Switching Hash Functions

• Do we need to switch now?

• Not quite — for many purposes, collision-resistance isn’t crucial

• We should immediately stop using MD5 for secure email

• But we can’t convert to anything stronger than SHA-1 — no one
supports it, and the network protocols weren’t properly designed for
upgrades

• There is as yet no agreement on what hash function to switch to

Steven M. Bellovin October 3, 2005 30

Other Important Algorithms

• Diffie-Hellman — used for key management

• Relies for its strength on the discrete logarithm problem: Given a and
ab mod p, it is infeasible for find b

• DSA (Digital Signature Algorithm) — U.S. government standard for
digital signatures; cannot be used for encryption

• Based on discrete log

Steven M. Bellovin October 3, 2005 31

Algorithm Strengths

Hash functions need to have output twice as long as the symmetric key
size for proper collision resistance

Symmetric Key Size Hash Output Size RSA or DH Modulus Size
70 140 947
80 160 1228
90 180 1553

100 200 1926
150 300 4575
200 400 8719
250 500 14596

(Source: RFC 3766)

Sizes based on estimated computational equivalence

Steven M. Bellovin October 3, 2005 32

Cost of Increasing Modulus Size

For RSA, doubling the modulus length increases encryption time by ∼ 4×

and increases decryption time by ∼ 8×.

Modulus CPU Time
256 1.5 ms
512 8.6

1024 55.4
2048 387.

(Source: RFC 3766)
Tests run years ago, on a 350 Mhz machine

Steven M. Bellovin October 3, 2005 33

