
Administrivia

• Midterm date change — new date is October 24

• TA for the class: Peter Lin (cl2399@columbia.edu)

• There will probably be a second TA

Steven M. Bellovin September 12, 2005 1



Access Control

• Hardware

• Software

– Operating systems

– Databases

– Other multi-access programs

• Distributed

Steven M. Bellovin September 12, 2005 2



Hardware

• What is the minimum necessary?

• What do other mechanisms buy us?

Steven M. Bellovin September 12, 2005 3



Minimum Functionality

• Protect the OS from applications

• Protect applications from each other

• Change state from application to OS

• Timer interrupt

Steven M. Bellovin September 12, 2005 4



Why a Timer?

• Availability is a security feature

• Must prevent uncooperative applications from hogging CPU

Steven M. Bellovin September 12, 2005 5



Historical Mechanisms

• Single privileged mode bit

• Memory protection

• Interrupts — hardware and software — cause state transition

Steven M. Bellovin September 12, 2005 6



Example: IBM System/360

• 40 year old design

• Much of the architecture still in use. . .

• 4-bit protection key associated with each 4K block of memory, plus
read-protect bit

• Single “supervisor mode” bit

• 4-bit state key of 0 can write to anything

• But — operating systems of that time didn’t use the hardware to its
full capabilites

Steven M. Bellovin September 12, 2005 7



Memory-Mapped Control

• On some machines, privileged operations work by memory access

• If applications have no access to such memory, they can’t do
sensitive things

• But — must have way to enter privileged state

Steven M. Bellovin September 12, 2005 8



Multics

• Virtual memory

• “Ring” structure — 8 different privilege levels (i386 has rings, too)

• Special form of subroutine call to cross rings

• Most of the OS didn’t run in Ring 0

Steven M. Bellovin September 12, 2005 9



What is the Advantage of Rings?

Steven M. Bellovin September 12, 2005 10



What is the Advantage of Rings?

• A single bit is theoretically sufficient

• Assurance!

• Don’t need to trust all parts of the system equally

• “Principle of Least Privilege”

Steven M. Bellovin September 12, 2005 11



Assurance

• How do you know something is secure

• Much harder to provide later than features

• A trustable secure system has to be designed that way from the
beginning: designed, document, coded, and tested — and maybe
proved

Steven M. Bellovin September 12, 2005 12



Underlying Principles

• Two basic approaches to privilege: identity and attribute

• Hardware protection is attribute: the state of various registers
controls what can and cannot be done

• Easier to manage in a single system

Steven M. Bellovin September 12, 2005 13



What is the role of the OS?

• Protect itself

• Separate different applications

• More?

Steven M. Bellovin September 12, 2005 14



Operating Systems and Hardware

• The hardware provides the minimum functionality

• The OS has to provide its own services on top of that

• Must manage access to I/O devices as well

Steven M. Bellovin September 12, 2005 15



What Protections do Operating Systems
Provide?

• User authentication (why?)

• File protection

• Process protection

• Resource scheduling (CPU, RAM, disk space, etc)

Steven M. Bellovin September 12, 2005 16



User Authentication

• (Much more on this later)

• Why authenticate users?

• Most operating system privileges are granted by identity, not attributes

• Procedure:
Authenticate user
Grant access based on userid

Steven M. Bellovin September 12, 2005 17



File Permissions

• Besides user authentication, the most visible aspect of OS security

• Read protection — provide confidentiality

• Write protection — provide integrity protection

• Other permissions as well

Steven M. Bellovin September 12, 2005 18



Classical Unix File Permissions

• All files have “owners”

• All files belong to a “group”

• Users, when logged in, have one userid and several groupids.

• 3 sets of 3 bits: read, write, execute, for user, group, other

• (512 possible settings. Do they all make sense?)

• Written rwxrwxrwx

• 111 101 001: User has read/write/exec; group has read/exec; other
has exec-only

• Some counter-intuitive settings are very useful

Steven M. Bellovin September 12, 2005 19



Permission-Checking Algorithm

if curr_user.uid == file.uid

check_owner_permissions();

else if curr_user.gid == file.gid

check_group_permissions();

else

check_other_permissions();

fi

Note the else clauses — if you own a file, “group” and “other”
permissions aren’t checked

Steven M. Bellovin September 12, 2005 20



Execute Permission

• Why is it separate from “read”?

• To permit only execution

• Cannot copy the file

• Readable only by the OS, for specific purposes

Steven M. Bellovin September 12, 2005 21



Directory Permissions

• “write”: create a file in the directory

• “read”: list the directory

• “execute”: trace a path through a directory

Steven M. Bellovin September 12, 2005 22



Example: Owner Permissions

$ id

uid=54047(smb) gid=54047(smb) groups=0(wheel),3(sys),54047(smb)

$ ls -l not me

----r--r-- 1 smb wheel 29 Sep 12 01:35 not me

$ cat not me

cat: not me: Permission denied

I own the file but don’t have read permission on it

Steven M. Bellovin September 12, 2005 23



Example: Directory Permissions

$ ls -ld oddball

dr--r--r-- 2 smb wheel 512 Sep 12 01:36 oddball

$ ls oddball

cannot get at

$ ls -l oddball

ls: cannot_get_at: Permission denied

$ cat oddball/cannot get at

cat: oddball/cannot get at: Permission denied

I can read the directory, but not trace a path through it to
oddball/cannot get at

Steven M. Bellovin September 12, 2005 24



Deleting Files

• What permissions are needed to delete files?

• On Unix, you need write permission on the parent directory

• You can delete files that you can’t write. You can also write to files
that you can neither create nor delete

• Other systems make this choice differently

Steven M. Bellovin September 12, 2005 25



Access Control Lists

• 9-bit model not always flexible enough

• Many systems (Multics, Windows XP, Solaris) have more general
Access Control Lists

• ACLs are explicit lists of permissions for different parties

• Wildcards are often used

Steven M. Bellovin September 12, 2005 26



Sample ACL

smb.* rwx

4995-ta.* rwx

*.faculty rx

*.* x

Users “smb” and ‘4995-ta” have read/write/execute permission. Anyone in
group “faculty” can read or execute the file. Others can only execute it.

Steven M. Bellovin September 12, 2005 27



Order is Significant

With this ACL:

*.faculty rx

smb.* rwx

4995-ta.* rwx

*.* x

I would not have write access to the file

Steven M. Bellovin September 12, 2005 28



Setting File Permissions

• Where do initial file permssions come from?

• Who can change file permissions?

Steven M. Bellovin September 12, 2005 29



Unix Initial File Permissions

• Unix uses “umask” — a set of bits to turn off when a program creates
a file

• Example: if umask is 022 and a program tries to create a file with
permissions 0666 (rw for user, group, and other), the actual
permissions will be 0644.

• Default system umask setting has a great effect on system file
security

• Set your own value in startup script; value inherited by child
processes

Steven M. Bellovin September 12, 2005 30



Multics Initial File Permissions

• Directories contain “initial access control list” — values set by default
for new files

• Common setting:

smb.faculty rw

*.sysdaemon r

*.* -

• If group “sysdaemon” doesn’t have read permission, the file can’t be
backed up!

Steven M. Bellovin September 12, 2005 31



MAC versus DAC

• Who has the right to set file permissions?

• Discretionary Access Control — the file owner can set permissions

• Mandatory Access Control — only the security officer can set
permissions

• Enforce site security rules

• Note: viruses and other malware change change DAC permissions,
but not MAC permissions

Steven M. Bellovin September 12, 2005 32



Privileged Users

• Root or Administrator can override file permissions

• This is a serious security risk — there is no protection if a privileged
account has been compromised

• There is also no protection against a rogue superuser. . .

• Secure operating systems do not have the concept of superusers

Steven M. Bellovin September 12, 2005 33



Database Access Control

• Often have their own security mechanisms

• Permit user logins, just like operating systems

• Some have groups as well

• Permissions are according to database concepts: protect rows and
columns

• Different types of operations: select, insert, update, delete, and more

Steven M. Bellovin September 12, 2005 34



Databases versus OS Security

• The database has many objects in a single OS file

• The OS can control access to the file

• The DBMS has to control access to objects within the file

• The set of database users is not the same as the set of OS users

Steven M. Bellovin September 12, 2005 35



Why the Formalisms?

• Why does the textbook describe access control formally?

• There are theorems that can be proved

• For example, if ACLs permit negation there are undecidable questions

Steven M. Bellovin September 12, 2005 36


