

Tetris FPGA:
A DE1-SoC Implementation of Tetris

Embedded Systems Design (CSEE4840)

Spring 2025

Michael Lippe (ml5201), Garvit Vyas (gv2361), Bhargav Sriram (bs3586)

1. Introduction 4
2. Project Overview 5
3. Hardware 6

3.1. Initial Plans 6
3.2. Final Hardware 7

3.2.1 Final Hardware Details 7
3.2.2 Hardware-Software Interface 12
3.2.3 Final Hardware Resource Utilization 13

4. Software 14
4.1 USB SNES Controller 14
4.2. Game Logic 15

4.2.1 Overall Game FSM 15
4.2.2 Start Screen 16
4.2.3 Gameplay Logic 17
4.2.4 SRS Rotation System 19
4.2.5 Game Over Screen 20

4.3. Display Logic 21
4.4. Dual Threads and Audio 22

5. USB Audio Implementation 23
6. Contributions and Lessons Learned 25

6.1. Lessons Learned 25
6.2. Contributions 25

7. References 26
8. Code 27

8.1. Sprite Hardware (Not Using) 27
8.1.1 address_decoder.sv 27
8.1.2 memories.sv 30
8.1.3 ppu_asm.sv 32
8.1.4 ppu_top.sv 47
8.1.5 priority_encoder.sv 53
8.1.6 shift_registers.sv 54
8.1.7 vga.sv 55

8.2. Tile Hardware 58
8.2.1 tiles.sv 58
8.2.2 twoportbram.sv 61
8.2.3 vga_counters.sv 62
8.2.4 vga_tiles.sv 63
8.2.5 soc_system_top.sv 66

8.3. Software Code 74
8.3.1 assets.h 74
8.3.2 audio.cpp 76

2

8.3.3 font.h 78
8.3.4 main.cpp 85
8.3.5 Makefile 95
8.3.6 runner.cpp 96
8.3.7 tetris.cpp 97
8.3.8 tetris.hpp 103
8.3.9 tiles.hex 106

3

1. Introduction

Tetris is a classic puzzle video game revolving around the strategic placement of falling
geometric shapes known as Tetrominos. The goal is to rotate and arrange these pieces in such a manner
that forms complete horizontal lines, which are then cleared from the screen, and points are given based
on the number of lines cleared. As the game goes on, the falling speed of the blocks increases, and thus so
does the difficulty.

In Tetris, gameplay revolves around manipulating geometric shapes known as Tetrominos, each
consisting of exactly four squares arranged in seven distinct configurations. These configurations are
labeled based on their shapes: I, O, T, S, Z, J, and L.

Figure 1: Tetrominos (Courtesy of Wikipedia [7])

Each Tetromino can be rotated by 90-degree increments, allowing four possible orientations for

each piece (except the O-Tetromino, which remains unchanged upon rotation). Players strategically rotate
and position these pieces as they descend, aiming to fill horizontal rows completely to clear them from the
playing field and score points.

The specifics for each Tetromino are:

● I-Tetromino: Straight-line shape, can rotate between vertical and horizontal orientations.
● O-Tetromino: Square shape, rotation does not affect its configuration.
● T-Tetromino: T-shaped configuration, has four distinct rotational states.
● S- and Z-Tetrominos: Mirror-image zigzag shapes, each has two rotational states due to

symmetry.
● J- and L-Tetrominos: Mirrored L-shaped configurations, each with four rotational states.

Our project implements a hardware-software system capable of playing Tetris. To accomplish our
goal of playing Tetris, we use an SNES-style USB controller, the DE1-SoC FPGA board, a VGA monitor,
a USB DAC, and a speaker.

4

2. Project Overview

The project can be broken down into five major sections: Input devices, software run on the HPS,
hardware instantiated on the FPGA, built-in peripherals on the DE1-SoC board, and output devices. The
block diagram for the project is shown in Figure 2, where the various components have been grouped
together into the five major sections.

Figure 2: System Block Diagram

5

3. Hardware

3.1. Initial Plans

Initially, our aim for graphics was to design a Picture Processing Unit (PPU) loosely based on the
on found in the Nintendo Entertainment System. However, after designing standalone testbenches for and
verifying several of the verilog modules for our original design, we realized that we made our system too
complex and verifying everything together within a week and a half while also figuring out the
compilation and software was not feasible As such, we decided to pivot to a simpler tile only approach as
Tetris does not need sprites. The original PPU hardware is still worth going over, however, as significant
time and effort was put into it and the learnings from it contributed significantly to the final project.

The Picture Processing Unit (PPU) was designed to drive a 640×480 VGA display at 60Hz.
Graphics were built from 16×16 tiles where each pixel was encoded in 4 bits, and each tile was referenced
via 8 bits of combined attribute data, specifically a 1‑bit palette ID and a 7‑bit tile ID. The PPU would
have supported storing 128 unique background titles in memory and 128 unique sprite tiles. The tile
buffer would have held 1,200 tiles since the tile resolution of the screen would be 40 x 30. Each color
palette had 4 colors, and there were a total of 2 palettes. The system would have allowed for up to 128
sprites on screen at once, with a maximum of 8 sprites per scan line. For sprites, we planed to use a
priority encoder to control shift registers. To minimize the critical path for the circuit that determines
which of the 8 sprites or the background a given pixel should come from, a divide and conquer approach
would have been adopted so that rather than a chain of 9 muxes, it would be a chain of length 4.

Object Attribute Memory (OAM) was used for storing data about each of the 128 sprites, where
each sprite would be described with an 8‑byte entry and addressed via 32-bit words. Table 1 shows the
per-sprite mapping of OAM.

Table 1: OAM Map Per Sprite

Words Field

Word 0 [31] Vertical Flip Bit, [30] Horizontal Flip Bit, [7] Color Palette ID, [6:0] Sprite
Tile ID

Word 1 [31:16] Y cord, [15:0] X cord

The main memory blocks in the PPU were the Tile Buffer, Tile Graphics Memory, Sprite

Graphics Memory, Color Palette Memory, and Object Attribute Memory; each would have been
implemented individually, with different widths based on the data it stores. The various PPU memories
would be exposed to the HPS as a single virtual VRAM. Table 2 shows the proposed addressing scheme
along with the width and size of each memory.

6

Table 2: VRAM Information

 Addressing Scheme Bits [12:0] Width Size

Tile Buffer 0x00XXBBBBBBBBB 32-bits 1200B

Tile Graphics 0x01TTTTTTTTTTT 32-bits 8192B

Sprite Graphics 0x10SSSSSSSSSSS 32-bits 8192B

Color Palettes 0x110XXXXXXXPPP 24-bits 24B

OAM 0x111XXOOOOOOOO 32-bits 1024B

 An initial draft of this PPU design was implemnted in System Verilog, with the corresponding
files shown in Section 8.1. Please note that none of this code is used in the final implementation of the
project.

3.2. Final Hardware

3.2.1 Final Hardware Details

With the pivot to a purely tile based approach, we based our final graphics hardware
implementation on Professor Stephen Edwards’ tile generator [1] [2]. We modified tiles.sv to add double
buffering to reduce flickering by keeping the tilemap being read by the video hardware consistent
throughout a given frame.. Figure 3 shows the general block diagram for the graphics hardware.

Figure 3: HW Block Diagram (Based on Professor Edwards’ diagram [1])

7

 As Figure 3 shows, the double buffering was accomplished by instantiating another 8192 x 8
BRAM that sits between the tilemap ram and the video generator. The System Verilog code for the double
buffering logic is shown below:

 //CPU side tile RAM

 //port-A (clk = mem_clk) from Avalon bus

 //port-B (clk = VGA_CLK) to frame cacher

 twoportbram #(.DATA_BITS(8), .ADDRESS_BITS(13)) tilemap_cpu (

 .clk1 (mem_clk),

 .addr1 (tm_address),

 .we1 (tm_we),

 .din1 (tm_din),

 .dout1 (tm_dout),

 .clk2 (VGA_CLK),

 .addr2 (copy_addr),

 .we2 (1'b0),

 .din2 (8'hxx),

 .dout2 (tm_cpu_dout)

);

 //Display side tile cache

 //port-A (clk = VGA_CLK) from pixel pipeline

 //port-B (clk = VGA_CLK) to frame cacher (writes)

 twoportbram #(.DATA_BITS(8), .ADDRESS_BITS(13)) tilemap_disp (

 .clk1 (VGA_CLK),

 .addr1 ({ vcount[8:3], hcount[9:3] }),

 .we1 (1'b0),

 .din1 (8'hxx),

 .dout1 (tilenumber),

 .clk2 (VGA_CLK),

 .addr2 (copy_addr_d1),

 .we2 (copy_we),

 .din2 (tm_cpu_dout),

 .dout2 ()

);

 //Per-frame cacher (runs during vblank)

 //starts at the first pixel of vblank (vcount = 480, hcount = 0)

 always_ff @(posedge VGA_CLK or posedge VGA_RESET) begin

 if (VGA_RESET) begin

8

 copying <= 1'b0;

 copy_addr <= 13'd0;

 end else begin

 if (!copying && hcount == 10'd0 && vcount == 10'd480) begin //start of

vblank

 //start caching

 copying <= 1'b1;

 copy_addr <= 13'd0;

 end else if (copying) begin

 copy_addr <= copy_addr + 13'd1;

 if (copy_addr == 13'd8191) //finished copying tile map into the

cache

 copying <= 1'b0;

 end

 end

 end

The always_ff block we have labled as the per-frame cacher is responsible for managing the

communication between the tilemap RAM and the tilemap cache. At the start of the vertical blanking
period, the per-frame cacher starts copying data from the tilemap RAM into the tilemap cache. As Shown
in Figure 4, given that the hardware is designed to support a resolution of 640 x 480, the total vblank
period, vertical front porch plus vertical back porch, is 43 lines. With 800 pixels per line, we get 34,400
pixels, and thus clock cycles, of vblank. Since we only have 8192 addresses to copy, and a copy only
takes one clock cycle, we have plenty of time to cache the state of the tilemap before we start drawing the
next frame.

9

Figure 4: VGA Region Map (Courtesy of Professor Edwards [1])

In terms of the overall design of the video generator, the hardware supports a resolution of 640 x

480 at 60hz. Tiles are 8 x 8 pixels with 4 bits per pixel. There is a single color palette with 16 colors. The
tileset memory supports storing the graphics for up to 256 tiles. With 8 x 8 tiles and a resolution of 640 x
480, the tile resolution of the screen is 80 x 60, for a total of 4,800 tiles being stored in the tilemap. The
next power of two number of tiles across each axis from 80 x 60 is 128 x 64, so the tilemap, and thus the
tile map cache, stores 8192 tiles. Since the tiles in the tile map are in row order, the tiles corresponding to
off screen coordinates are not displayed. Figure 5 shows how the tilemap is layed out. The tiles on the far
right and bottom are not displayed on the screen.

10

Figure 5: Tilemap Regions [2]

Each tile is 32 bytes, and each tile ID is 8-bits, since we have 256 tiles. Thus, the tileset is 256

tiles x 32 bytes = 8KiB. The tilemap and tilemap cache store 8192 tiles each with an 8-bit tile ID for a
size of 8192 x 1 byte = 8KiB. The palette memory stores 16 24-bit colors for a total size of 48B. Because
each memory stores different data: the tilemap needs stores the tile IDs, the tileset stores the 4-bit color
codes, and the palette memory stores the 24-bit RGB value, each memory is a different width. The details
for each memory are shown in Table 3. Note that the tilemap cache is not accessible to the CPU.

Table 3: Memory Details

Memory Size Data Width Number of Addresses

Tileset 8KiB 4 bits 16,384

Tilemap 8KiB 8 bits 8,192

Tilemap Cache 8KiB 8 bits 8,192

Palette 24B 24 bits 16

Total 24.624KB - -

The total memory used of 24.624KB is a fraction of the available M10K memory on the FPGA

which is arround 480KB. Since M10K blocks can be dual-ported each memory is configured as dual-port
so that the CPU can get one port and the video generator can get the other port.

Because of the dual-buffering setup, the dual-porting of the tilemap and tilemap cache are used
slightly differently to how it is used for the other memories. For the tilemap, one port goes to the CPU and
the other goes to the tilemap cache (data) and buffer controller (address and write control). For the

11

tilemap cache, one port goes to the tilemap memory (data) and buffer controller (address and write
control) and the other goes to the video generator.

The hardware also implements pipelining to account for the one cycle delay between sending an
address to memory and getting the corresponding data back. Because of this one cycle delay, the hcount,
VGA_BLANK_n, and VGA_HS signals, would be one cycle ahead of the current pixel data, leading to
graphical issues, To solve this, the signals are pipelined to introduce a one cycle delay to keep them in
sync with the current pixel the color data is being calculated for. Ideally, vcount and VGA_VS would be
pipelined as well to account for this one cycle delay as well, but because they signals only change once
per scan line, the delay is not as relevant. The provided tile hardware [2] was functional without
pipelining for these two signals so we saw no need to modify the pipelining behavior or add pipelining to
these two signals.1

3.2.2 Hardware-Software Interface

 No driver is required for the hardware; instead, the tile map, color palette, and tileset memories
are directly mapped to memory addresses which the CPU can read and write to. Table 4 shows the
memory map and corresponding addresses used, while Figure 6 shows the addressing scheme. The
addresses were derived from the example U-Boot code given in the tiles tutorial [2]; it was found that the
same addresses work from within Linux.

Table 4: Memory Map

Region Base Address Address Range

Tile Map 0xFF200000 0xFF200000 - 0xFF201FFF

Palette 0xFF202000 0xFF202000 - 0xFF20203F

Tileset 0xFF204000 0xFF204000 - 0xFF207FFF

Figure 6: Address Encoding Scheme (Courtesy of Stephen Edwards [2])

To communicate with the tiles hardware from within Linux, we simply write or read from the

addresses listed in Table 4. For the tilemap, indexing it is made easier by the fact that bits [13:7] of the
address correspond to the row while bits [6:0] corresponding to the column.

1 For more details on how tile graphics hardware we used and modified for our project was developed, please see
Professor Edwards’ writeup [1].

12

3.2.3 Final Hardware Resource Utilization

Figure 7: FPGA Resource Utilization

 Figure 7 shows the FPGA resource utilization for the final implementation of the design. We have
plenty of resources to spare, with the most used resource being the pins.

13

4. Software

4.1 USB SNES Controller

 Our game is controlled using the Kiwitata USB SNES style controller shown in Figure 8.

Figure 8: USB SNES Controller [8]

 To read the controller, the Linux kernel’s built-in HID driver parses the device descriptors and
creates an input node under /dev/input/event*. To open the controller for reading, our code calls
open_controller() which iterates through event0–event31, using the EVIOCGNAME and EVIOCGID
ioctls to match the SNES pad before opening it in non-blocking mode so that our game loop can poll it
without blocking inputs.

Controller Input Tetris Method Description

D-pad Left move_left() Shift the active tetromino one
column left

D-pad Right move_right() Shift the active tetromino one
column right

D-pad Down, A, Y soft_drop() Advance the tetromino one row
downward

14

B hard_drop() Instantly lock the tetromino at
bottom

L, R, X rotate() Rotate the tetromino 90° clockwise

Select toggle_pause() Pause / resume the game

Start spawn() / reset() Begin play from START/OVER

 During each 60 Hz cycle, our poll_input() routine drains all pending HID reports from the
controller’s non blocking file descriptor and immediately translates them into game actions. Left and right
D-pad movements slide the current tetromino one column via move_left() or move_right(), while pressing
down on the pad—or tapping either the A or Y button—invokes soft_drop(), advancing the piece a single
row. The three shoulder inputs (L, R) and X all call rotate(), causing a quarter‐turn clockwise spin about
the piece’s pivot; tapping B executes a hard_drop(), locking the tetromino at its lowest valid position.
Meanwhile, Select toggles the pause flag—freezing both gravity and input handling—and pressing Start
in either the START or OVER state clears the screen and transitions into PLAY (or resets a completed
game).

4.2. Game Logic

4.2.1 Overall Game FSM

Figure 9: Overall Game State FSM

15

The overall game FSM, shown in Figure 9, has three states: START, PLAY and OVER. The
START state is when the game starts up and the press start to play screen appears. This transitions into
initializing and displaying the playscren and the first piece spawns at the center of the playfield when it
enters the PLAY state where the game logic is run. A game over then trigger the OVER condition and
upon pressing the start button to restart, we return to the START condition.

4.2.2 Start Screen

Upon first booting up the game, the start‐screen, shown in Figure 10, is displayed. The main loop

enters the START state and waits for the start button to be pressed. Once the start button is pressed,
tilemap is cleared, and the FSM state is changed from START to PLAY, handing control over to the active
game loop.

Figure 10: Tetris Start Screen

16

4.2.3 Gameplay Logic

In the PLAY state the Tetris code executes a deterministic, 60 Hz loop that integrates piece
generation, user input, automatic descent, collision resolution, row clearing, level increasing, speed
increasing, and end-of-game handling.
 Each iteration of the loop advances the game by precisely one frame, ensuring that player actions
and gravity-driven events are applied in lockstep with rendering. The general logic loop is shown in
Figure 11.

Figure 11: General Diagram of Gameplay Logic

Key stages of the loop include:

● spawn()
Initializes a new tetromino by moving the next-piece buffer into the active piece (cur = nxt),
generating a fresh random preview (nxt = rnd_piece()), and resetting position and orientation (px
= 5, py = 0, rot = 0). An immediate collision at this location—checked via collision(px, py, cur,
rot)—flags the game as over.

● poll_input()
Reads all pending struct input_event records from the nonblocking controller descriptor. D-pad
left/right (ABS_HAT0X 0/255) invoke move_left()/move_right(), D-pad down (ABS_HAT0Y
255) and buttons A/Y (codes 289/291) call soft_drop(), shoulder buttons L/R/X (292/293/288)
trigger rotate(), B (290) executes hard_drop(), and Select (296) toggles pause.

● Gravity Tick (step)
Increments an internal tick counter and, when tick % max(1, 30/level) == 0, attempts an
automatic descent. If collision(px, py + 1, cur, rot) is false, the piece moves down; otherwise,
lock_piece() is invoked.

17

● lock_piece() & clear_lines()
Embeds the rotated tetromino mask into the 20×10 playfield array, then scans for full rows in
clear_lines(). Each complete line is removed by shifting all above rows downward and inserting
an empty row at the top. The routine increments lines_cleared, recalculates level = 1 +
(lines_cleared / 10), and updates score_val according to the 100–300–500–800 table.

● Chain spawn()
After clearing lines, spawn() is called again to introduce the next piece or, if the spawn location is
obstructed, to set the game-over flag.

● draw_ghost()
Ghost Piece Projection runs before each frame’s rendering: simulates a hard drop without
modifying game state, locating the lowest valid position and overlaying the tetromino in the
designated ghost tile (Tile 13), thereby giving the player a preview of its landing spot.

● Next-Piece Preview is rendered each frame via draw_next(), which displays the upcoming
tetromino in a reserved tilemap region, granting players foresight into subsequent pieces and
enabling deeper tactical play.

● Game-Over & Reset
When over is true, the loop transitions to the OVER state and displays the final score. A
Start-button press (EV_KEY code 297) then invokes reset(), which clears the playfield, zeros
score and lines, resets level and tick counters, and returns to spawn() to begin a new game.

● Level Progression ties difficulty to performance: each ten lines cleared increments the level by
one, shortening the gravity interval via interval = max(1, 30/level) and accelerating automatic
drops to increase challenge.

By organizing these stages into a single frame-driven cycle and leveraging the Super-Rotation
System, nonblocking I/O, and efficient tilemap updates, the implementation delivers precise, low-latency
gameplay that reproduces classic Tetris mechanics on the DE1-SoC. The core game logic is loosely based
on an open-source C++ Tetris implementation [3].

18

Figure 12: Tetris Gameplay

 Figure 12 shows the Tetris gameplay screen. Here you can see all the various aspects of the game,
including the playfield, next piece, level, score, lines, current block, and ghost block.
Scoring follows the familiar non-linear scheme to reward multi-line clears: 100 points for a single line,
300 for a double, 500 for a triple, and 800 for a four-line “Tetris,” encouraging strategic stacking and
line-clear planning.

4.2.4 SRS Rotation System

 In our implementation, each tetromino adheres to the Super‐Rotation System (SRS), cycling
through four discrete states—0°, 90°, 180°, and 270°—with every clockwise turn simply computed as
(state + 1) % 4. This rotation always occurs around a well‐defined pivot within the 4×4 mask, ensuring
that pieces maintain consistent geometry as they spin. By embedding this logic directly in the
Tetris::rotate() method, we guarantee that each button press advances the orientation predictably, without
ambiguity in how the block will appear on the playfield.

However, a naive rotation can collide with walls or existing blocks, so SRS supplements the raw
turn with a series of “wall‐kick” trials: when a rotation initially overlaps the playfield, the system tests up
to five small positional offsets to find a valid placement before abandoning the rotation. J, L, S, T, and Z
pieces use the JLSTZ kick table—(0,0), (–1,0), (–1,+1), (0,–2), and (–1,–2)—while the I-tetromino
applies its own wider offsets of (0,0), (–2,0), (+1,0), (–2,–1), and (+1,+2) to accommodate its elongated
shape. The square (O) piece, thanks to its perfect symmetry, simply rotates in place without any kicks.
Importantly, SRS accepts the first offset that resolves the collision and cancels the turn only if all five

19

attempts fail, yielding the familiar, forgiving rotation behavior that players expect from modern Tetris.
Our SRS rotation is based on the table below, however only for clockwise rotation as we don’t have
anti-clockwise rotation.

Figure 13: SRS Rotation System (Courtesy of Harddrop Wiki [4])

4.2.5 Game Over Screen

When the playfield can no longer accommodate a new tetromino, the game enters the OVER state
and invokes show_game_over(). This routine begins by wiping the tilemap clean with memset(TM, 0),
removing any remnants of the previous game. It then displays “GAME OVER” as shown in the figure
below at (10, 10), followed by the final score and total lines cleared at (10, 20) and (10, 30), respectively.
To invite another attempt, it draws “START: RESTART” at (10, 40), matching the report’s end‐screen
illustration. The main loop continues at 60 Hz but deliberately ignores all inputs until it sees the Start
button (EV_KEY code 297). When Start is pressed, reset() reinitializes the internal playfield array, zeros
the score and line counters, and restores the level and tick counters to their defaults before calling spawn()
to introduce the first tetromino of the next game.

20

Figure 14: Tetris Game Over Screen

4.3. Display Logic

 The rendering subsystem begins by memory-mapping the three FPGA regions—tilemap (TM),
palette (PA), and tileset (TS)—via map_fpga(), then populating PA and TS in load_assets(). Once the tile
graphics and 16-color palette are resident in VRAM, the game uses a small set of draw primitives (put(),
rect(), frame(), draw_char(), and draw_string()) to update the scene each 60 Hz frame. In practice, each
function writes tile indices into the 8 KB TM region: draw_borders() frames the playfield and next-piece
box, draw_playfield() and draw_piece() paint locked and active tetrominos, draw_ghost() overlays a
faded preview, draw_next() renders the upcoming piece, and draw_hud() blits score, lines, and level using
text tiles. Clearing and re-drawing only changed regions (e.g. individual digits) minimizes memory writes,
ensuring smooth animation on the DE1-SoC’s hardware tile engine.

The complete tileset is illustrated in Figure 15. Ten distinct tiles are used for all graphics and text:

● Tile 0: Background (empty playfield)
● Tile 1: Walls, playfield border, and next-piece bounding box

21

● Tiles 2–7: Solid blocks for the seven tetromino types (I, J, L, O, S, T, Z)
● Tile 13: Ghost-piece overlay and all alphanumeric characters rendered by draw_string()

Figure 15: Tetris Tileset

4.4. Dual Threads and Audio

We separate the audio playback and the gameplay logic using two threads. Thread 1 is used for
the game logic which runs the game loop and handles the inputs.screen rendering and thread 2 is used to
read and decode the mp3 audio file we provide in our case we are using tetris.mp3 which is an mp3 file
from Internet Archive [9]. The file Runner.cpp creates two threads using POSIX threads which runs both
the threads in parallel such that the audio plays while we are playing the game, one thread runs the audio
executable while the other thread runs the tetris executable.

22

5. USB Audio Implementation

 We initially explored FPGA‐based audio cores but encountered persistent driver and timing
conflicts under the SoCFPGA Linux environment, so we elected to use a class-compliant USB audio
approach instead. Figure 16 shows the USB DAC used.

Figure 16: Griffen iMic USB Audio DAC [10]

SInce the provided kernel did not have usb audio support, we had to build the snd-usb audio

kernel module ourselves. After cloning the linux-socfpga v4.19 repository and building with
socfpga_defconfig, we enabled the snd-usb-audio module via make menuconfig (under Sound → USB)
and loaded it with modprobe snd_usb_audio. As a result, any connected USB DAC now appears as an
ALSA sound card at boot.

In user space, libmpg123 decodes our Tetris.mp3 file into raw PCM samples, which libao then
feeds into ALSA’s PCM interface; ALSA buffers these frames and dispatches them over isochronous
USB transfers through the snd-usb-audio driver to the external DAC, which converts them to analog and
drives the speakers. We also had to edit the dtb to force the ports into host mode. Finally, audio playback
runs in its own POSIX thread, decoupling it from the main game loop to ensure seamless, uninterrupted
music alongside the gameplay. Figure 17 shows the USB audio flow.

23

Figure 17: USB Audio Flow

24

6. Contributions and Lessons Learned

6.1. Lessons Learned

We learned to start a project with a minimum viable product(MVP) where we started with a

sprite-based approach when we should have started with just the tile-based approach required by tetris.
While building the testbenches for the initial sprite-based approach we realised that due to time
constraints we would not be able to test this custom hardware for all cases and complete the game which
motivated us to pivot to a simpler approach which is convenient for a game like tetris which uses tiles and
we decided to make the gameplay smoother by adding double buffering to the tile-based approach which
is easier to test.

We also learnt the importance of using open-source hardware and software and also the
importance of hardware- software integration to get a working product, which is a game in this case, if we
are limited by time.

6.2. Contributions

● Michael Lippe: Developed the initial design for the sprite hardware. Implemented the sprite PPU
in system verilog. Modified the provided tiles hardware to add double buffering. Synthesized the
hardware to run on the FPGA. Got hardware software interface working to edit the tiles memory
from within Linux. Found and configured correct Linux Kernel with USB Audio support.
Decompiled and recompiled DTB to force USB ports on the DE1-SoC to operate in host mode.
Got USB Audio working with USB DAC and speaker. Designed the tileset artwork. Implemented
the ghost piece and level system. Sourced font.

● Garvit Vyas: Developed TestBenches for the initial sprite based hardware design to verify
functionality and debug DUT on Modelsim with waveforms. Worked on finding the correct USB
Audio Linux Kernel to get USB audio to work. Tried testing other hardware based Audio open
source implementations for DE1-SoC before moving forward with USB audio. Implemented
various gameplay functions for the software game logic.

● Bhargav Sriram: Worked on the software game logic to implement various functions. Worked on
finding the correct Linux Kernel build for the USB Audio+getting it to work . Helped develop
testbenches of the initial sprite based hardware based design for verifying functionality

25

7. References
1. Edwards, S. VGA tile graphics on an FPGA: A tutorial.

https://www.cs.columbia.edu/~sedwards/classes/2025/4840-spring/tiles.pdf
2. Edwards, S. Source files for VGA TIle Graphics on an FPGA

https://www.cs.columbia.edu/~sedwards/classes/2025/4840-spring/tiles.tar.gz
3. Milon. Milon/Tetris: My First Project Using C++. GitHub. https://github.com/milon/Tetris
4. SRS. Hard Drop Tetris Wiki. https://harddrop.com/wiki/SRS
5. Altera-Fpga. Altera-FPGA/Linux-socfpga at v4.19. GitHub.

https://github.com/altera-fpga/linux-socfpga/tree/v4.19
6. Ameba8195. Arduino/hardware_v2/cores/arduino/font5x7.h at master · AMEBA8195/Arduino.

GitHub.
https://github.com/Ameba8195/Arduino/blob/master/hardware_v2/cores/arduino/font5x7.h

7. Wikimedia Foundation. (2025, April 27). Tetromino. Wikipedia.
https://en.wikipedia.org/wiki/Tetromino

8. Amazon.com: Kiwitata 2X Classic SNES USB controller for Retro Gamings, SNES wired USB
Joypad Game Controller for windows PC mac raspberry pi : Video games.
https://www.amazon.com/Classic-Controller-kiwitat%C3%A1-Joystick-Raspberry/dp/B01JYGY
AX8

9. Tetris theme music : Free Download, borrow, and streaming. Internet Archive.
https://archive.org/details/TetrisThemeMusic

10. Amazon.com: Griffin Technology IMIC - the original USB stereo input and Output Audio
Adapter : Griffin Technology: Electronics.
https://www.amazon.com/Griffin-Technology-iMic-original-Adapter/dp/B003Y5D776

26

https://www.cs.columbia.edu/~sedwards/classes/2025/4840-spring/tiles.pdf
https://www.cs.columbia.edu/~sedwards/classes/2025/4840-spring/tiles.tar.gz
https://github.com/milon/Tetris
https://harddrop.com/wiki/SRS
https://github.com/altera-fpga/linux-socfpga/tree/v4.19
https://github.com/Ameba8195/Arduino/blob/master/hardware_v2/cores/arduino/font5x7.h
https://en.wikipedia.org/wiki/Tetromino
https://www.amazon.com/Classic-Controller-kiwitat%C3%A1-Joystick-Raspberry/dp/B01JYGYAX8
https://www.amazon.com/Classic-Controller-kiwitat%C3%A1-Joystick-Raspberry/dp/B01JYGYAX8
https://archive.org/details/TetrisThemeMusic
https://www.amazon.com/Griffin-Technology-iMic-original-Adapter/dp/B003Y5D776

8. Code

8.1. Sprite Hardware (Not Using)

8.1.1 address_decoder.sv
// hw/address_decoder.sv

`timescale 1ns/1ps

module addr_decode(

 addr,

 write_data,

 chip_select,

 write,

 rw_tile_buffer,

 rw_tile_graphics,

 rw_sprite_graphics,

 rw_color_palettes,

 rw_OAM,

 write_data_tile_buffer,

 write_data_tile_graphics,

 write_data_sprite_graphics,

 write_data_OAM,

 write_data_color_palettes,

 addr_tile_buffer,

 addr_tile_graphics,

 addr_sprite_graphics,

 addr_color_palettes,

 addr_OAM

);

 // port declarations

 input logic [12:0] addr;

 input logic [31:0] write_data;

 input logic chip_select;

 input logic write;

 output logic rw_tile_buffer;

 output logic rw_tile_graphics;

 output logic rw_sprite_graphics;

27

 output logic rw_color_palettes;

 output logic rw_OAM;

 output logic [31:0] write_data_tile_buffer;

 output logic [31:0] write_data_tile_graphics;

 output logic [31:0] write_data_sprite_graphics;

 output logic [31:0] write_data_OAM;

 output logic [23:0] write_data_color_palettes;

 output logic [8:0] addr_tile_buffer;

 output logic [10:0] addr_tile_graphics;

 output logic [10:0] addr_sprite_graphics;

 output logic [2:0] addr_color_palettes;

 output logic [7:0] addr_OAM;

 always @(*) begin

 // defaults

 rw_tile_buffer = 1'b0;

 rw_tile_graphics = 1'b0;

 rw_sprite_graphics = 1'b0;

 rw_color_palettes = 1'b0;

 rw_OAM = 1'b0;

 write_data_tile_buffer = 32'h0;

 write_data_tile_graphics = 32'h0;

 write_data_sprite_graphics = 32'h0;

 write_data_OAM = 32'h0;

 write_data_color_palettes = 24'h0;

 addr_tile_buffer = 9'h0;

 addr_tile_graphics = 11'h0;

 addr_sprite_graphics = 11'h0;

 addr_color_palettes = 3'h0;

 addr_OAM = 8'h0;

 // decode top 3 bits (addr[12:10])

 casez (addr[12:10])

 3'b00z: begin // Tile Buffer (00x)

 if (chip_select && write) begin

 rw_tile_buffer = 1'b1;

 addr_tile_buffer = addr[8:0];

 write_data_tile_buffer= write_data;

28

 end

 end

 3'b01z: begin // Tile Graphics (01x)

 if (chip_select && write) begin

 rw_tile_graphics = 1'b1;

 addr_tile_graphics = addr[10:0];

 write_data_tile_graphics = write_data;

 end

 end

 3'b10z: begin // Sprite Graphics (10x)

 if (chip_select && write) begin

 rw_sprite_graphics = 1'b1;

 addr_sprite_graphics = addr[10:0];

 write_data_sprite_graphics = write_data;

 end

 end

 3'b110: begin // Color Palettes

 if (chip_select && write) begin

 rw_color_palettes = 1'b1;

 addr_color_palettes = addr[2:0];

 write_data_color_palettes = write_data[23:0];

 end

 end

 3'b111: begin // OAM

 if (chip_select && write) begin

 rw_OAM = 1'b1;

 addr_OAM = addr[7:0];

 write_data_OAM= write_data;

 end

 end

 endcase

 end

endmodule

29

8.1.2 memories.sv
module tile_buffer(

 input logic clk, rw_1, rw_2,

 input logic [31:0] write_data_1, write_data_2,

 input logic [8:0] addr_1, addr_2,

 output logic [31:0] read_data_1, read_data_2

);

 logic [31:0] tile_buffer_array [299:0];

 always @(posedge clk) begin

 if (rw_1) tile_buffer_array[addr_1] <= write_data_1;

 else read_data_1 <= tile_buffer_array[addr_1];

 if(rw_2) tile_buffer_array[addr_2] <= write_data_2;

 else read_data_2 <= tile_buffer_array[addr_2];

 end

endmodule

module tile_graphics(

 input logic clk, rw_1, rw_2,

 input logic [31:0] write_data_1, write_data_2,

 input [10:0] addr_1, addr_2,

 output logic [31:0] read_data_1, read_data_2

);

 logic [31:0] tile_graphics_array [2047:0];

 always @(posedge clk) begin

 if (rw_1) tile_graphics_array[addr_1] <= write_data_1;

 else read_data_1 <= tile_graphics_array[addr_1];

 if(rw_2) tile_graphics_array[addr_2] <= write_data_2;

 else read_data_2 <= tile_graphics_array[addr_2];

 end

endmodule

module sprite_graphics(

 input logic clk, rw_1, rw_2,

 input logic [31:0] write_data_1, write_data_2,

 input [10:0] addr_1, addr_2,

 output logic [31:0] read_data_1, read_data_2

30

);

 logic [31:0] sprite_graphics_array [2047:0];

 always @(posedge clk) begin

 if (rw_1) sprite_graphics_array[addr_1] <= write_data_1;

 else read_data_1 <= sprite_graphics_array[addr_1];

 if(rw_2) sprite_graphics_array[addr_2] <= write_data_2;

 else read_data_2 <= sprite_graphics_array[addr_2];

 end

endmodule

module color_palettes(

 input logic clk, rw_1, rw_2,

 input logic [23:0] write_data_1, write_data_2,

 input [2:0] addr_1, addr_2,

 output logic [23:0] read_data_1, read_data_2

);

 logic [23:0] color_palette_array [7:0];

 always @(posedge clk) begin

 if (rw_1) color_palette_array[addr_1] <= write_data_1;

 else read_data_1 <= color_palette_array[addr_1];

 if(rw_2) color_palette_array[addr_2] <= write_data_2;

 else read_data_2 <= color_palette_array[addr_2];

 end

endmodule

module OAM (

 input logic clk, rw_1, rw_2,

 input logic [31:0] write_data_1, write_data_2,

 input [7:0] addr_1, addr_2,

 output logic [31:0] read_data_1, read_data_2

);

 logic [31:0] OAM_array [255:0];

 always @(posedge clk) begin

 if (rw_1) OAM_array[addr_1] <= write_data_1;

31

 else read_data_1 <= OAM_array[addr_1];

 if(rw_2) OAM_array[addr_2] <= write_data_2;

 else read_data_2 <= OAM_array[addr_2];

 end

endmodule

8.1.3 ppu_asm.sv
module PPU_asm(

 input logic clk, //Clock

 input logic reset, //Active High Reset

 //VGA related IO

 input logic [10:0] hcount, //VGA hcount from VGA Controller

 input logic [9:0] vcount, //VGA vcount from VGA Controller

 input logic vblank, //VGA vblank from VGA Controller

 input logic hsync, //VGA hsync from VGA Controller

 output logic [23:0] pixel_color, //Pixel Color to Send to VGA Controller

 //RW Signals to Memories

 output logic rw_tile_buffer,

 output logic rw_tile_graphics,

 output logic rw_sprite_graphics,

 output logic rw_color_palettes,

 output logic rw_OAM,

 //Write Data to Memories

 output logic [31:0] write_data_tile_buffer,

 output logic [31:0] write_data_tile_graphics,

 output logic [31:0] write_data_sprite_graphics,

 output logic [31:0] write_data_OAM,

 output logic [23:0] write_data_color_palettes,

 //Address Signals to Memories

 output logic [8:0] addr_tile_buffer,

 output logic [10:0] addr_tile_graphics,

 output logic [10:0] addr_sprite_graphics,

 output logic [2:0] addr_color_palettes,

 output logic [7:0] addr_OAM,

32

 //Read Data from Memories

 input logic [31:0] read_data_tile_buffer,

 input logic [31:0] read_data_tile_graphics,

 input logic [31:0] read_data_sprite_graphics,

 input logic [31:0] read_data_OAM,

 input logic [23:0] read_data_color_palettes,

 //Shift Register Signals

 output logic [31:0] shift_load_data [8:0],

 output logic [8:0] shift_enable,

 output logic shift_load_sprite,

 output logic shift_load_background,

 //Priority Encoder Signals

 output logic priority_palette_data_out[8:0],

 input logic [1:0] priority_pixel_data_in,

 input logic priority_palette_data_in

);

 //Buffers Updated During Vblank

 logic [23:0] color_palette_buffer [8:0];

 logic [15:0] sprite_x_buffer [127:0];

 logic [15:0] sprite_y_buffer [127:0];

 logic sprite_palette_buffer [127:0];

 logic [6:0] sprite_tile_id_buffer [127:0];

 logic [1:0] sprite_rotation_buffer [127:0];

 //Buffers Updated During Hsync

 logic [31:0] background_line_graphics_buffer [39:0];

 logic [39:0] background_line_palette_buffer;

 logic [31:0] sprite_graphics_buffer [7:0];

 logic [6:0] sprites_on_line [7:0];

 logic sprites_on_line_palettes[7:0];

 //Vblank memory access trackers

 logic [7:0] cords_sprite_load;

 logic [7:0] palette_sprite_load;

 logic [3:0] palette_ram_pointer;

 //Hsync memory access trackers

 logic [5:0] background_line_pointer;

 logic [2:0] sprite_graphics_pointer;

33

 logic [7:0] sprites_on_line_pointer;

 logic [3:0] shift_register_load_pointer;

 logic [3:0] sprites_found;

 always @(posedge clk) begin

 //reset

 if (reset) begin

 rw_tile_buffer <= 0;

 rw_tile_graphics <= 0;

 rw_sprite_graphics <= 0;

 rw_color_palettes <= 0;

 rw_OAM <= 0;

 cords_sprite_load <= 0;

 palette_sprite_load <= 0;

 palette_ram_pointer <= 0;

 background_line_pointer <= 0;

 sprite_graphics_pointer <= 0;

 sprites_on_line_pointer <= 0;

 sprites_found <= 0;

 shift_register_load_pointer <= 0;

 shift_enable <= 0;

 shift_load_background <= 0;

 shift_load_sprite <= 0;

 background_line_palette_buffer <= 40'b0;

 for (int i = 0; i < 128; i = i + 1) begin

 sprite_x_buffer[i] <= 0;

 sprite_y_buffer[i] <= 0;

 sprite_tile_id_buffer[i] <= 0;

 sprite_rotation_buffer[i] <= 0;

 sprite_palette_buffer[i] <= 0;

 end

 for (int i = 0; i < 8; i += 1) begin

 sprite_graphics_buffer[i] <= 0;

 sprites_on_line[i] <= 0;

 shift_load_data[i] <= 0;

 sprites_on_line_palettes[i] <= 0;

 end

 for (int i = 0; i < 40; i += 1) begin

 background_line_graphics_buffer[i] <= 0;

 end

 for (int i = 0; i < 9; i += 1) begin

34

 priority_palette_data_out[i] <= 0;

 end

 end

 /*

 Note that reading from any of the memories in memories.sv takes 2 cycles. On

cycle 1, we give the memory the address

 we want to read from. On cycle 2, we get the data at that address on the

memories respective read_data line. As such,

 you will notice that when filling the buffers from memory, there is a one cycle

offset between sending the address and

 filling the buffer, hence the at first confusing four tiered if statements. For

the first one, we only send the address

 since we have no data to load. For the second, we load the data for the

previous address and send the next address. For

 the third one we have no new addresses to send but we still need to received

and load the final data return into the buffer.

 For the fourth one, we are done with both addresses and reading data.

 */

 //set buffers that fill once per frame

 else if (vblank) begin

 //fill color_palette_buffer

 if (palette_ram_pointer == 0) begin

 rw_color_palettes <= 0; //Set color palette memory to read

 addr_color_palettes <= palette_ram_pointer;

 palette_ram_pointer <= palette_ram_pointer + 1;

 end

 else if (palette_ram_pointer < 8) begin

 rw_color_palettes <= 0; //Set color palette memory to read

 addr_color_palettes <= palette_ram_pointer;

 color_palette_buffer[palette_ram_pointer - 1] =

read_data_color_palettes;

 palette_ram_pointer <= palette_ram_pointer + 1;

 end

 else if (palette_ram_pointer == 8) begin

 rw_color_palettes <= 0; //Set color palette memory to read

 addr_color_palettes <= 0;

35

 color_palette_buffer[palette_ram_pointer - 1] =

read_data_color_palettes;

 palette_ram_pointer <= palette_ram_pointer + 1;

 end

 else begin

 rw_color_palettes <= 0; //Set color palette memory to read

 addr_color_palettes <= 0;

 end

 //fill sprite_x_buffer and sprite_y_buffer

 if (cords_sprite_load == 0) begin

 rw_OAM <= 0; //Set OAM memory to read

 addr_OAM <= cords_sprite_load * 2 + 1;

 cords_sprite_load <= cords_sprite_load + 1;

 end

 else if (cords_sprite_load < 128) begin

 rw_OAM <= 0; //Set OAM memory to read

 addr_OAM <= cords_sprite_load * 2 + 1;

 sprite_x_buffer[cords_sprite_load - 1] <= read_data_OAM[15:0];

 sprite_y_buffer[cords_sprite_load - 1] <= read_data_OAM[31:16];

 cords_sprite_load <= cords_sprite_load + 1;

 end

 else if (cords_sprite_load == 128) begin

 rw_OAM <= 0; //Set OAM memory to read

 addr_OAM <= palette_sprite_load;

 sprite_x_buffer[cords_sprite_load - 1] <= read_data_OAM[15:0];

 sprite_y_buffer[cords_sprite_load - 1] <= read_data_OAM[31:16];

 cords_sprite_load <= cords_sprite_load + 1;

 palette_sprite_load <= palette_sprite_load + 1;

 end

 else if (palette_sprite_load < 128) begin

 rw_OAM <= 0; //Set OAM memory to read

 addr_OAM <= palette_sprite_load * 2;

 sprite_palette_buffer[palette_sprite_load - 1] <= read_data_OAM[7];

 sprite_tile_id_buffer[palette_sprite_load - 1] <= read_data_OAM[6:0];

 sprite_rotation_buffer[palette_sprite_load - 1] <=

read_data_OAM[31:30];

 palette_sprite_load <= palette_sprite_load + 1;

36

 end

 else if (palette_sprite_load == 128) begin

 rw_OAM <= 0; //Set OAM memory to read

 addr_OAM <= 0;

 sprite_palette_buffer[palette_sprite_load - 1] <= read_data_OAM[7];

 sprite_tile_id_buffer[palette_sprite_load - 1] <= read_data_OAM[6:0];

 sprite_rotation_buffer[palette_sprite_load - 1] <=

read_data_OAM[31:30];

 palette_sprite_load <= palette_sprite_load + 1;

 end

 else begin

 rw_OAM <= 0; //Set OAM memory to read

 addr_OAM <= 0;

 end

 end

 //Set buffers that fill once per line

 else if (hsync) begin

 //Load background tiles into buffer

 if (background_line_pointer == 0) begin

 rw_tile_buffer <= 0; //Set tile buffer memory to read

 /*Calculate address into the tile buffer for tile at the start of the

current line.

 We do *10 and not *40 since each 32-bit entry of the tile-buffer holds

4 tile IDs */

 addr_tile_buffer <= vcount * 10;

 background_line_pointer <= background_line_pointer + 1;

 end

 else if (background_line_pointer == 1) begin

 rw_tile_buffer <= 0; //Set tile buffer memory to read

 rw_tile_graphics <= 0;

37

 /*Calculate address into the tile buffer for current tile being

processed.

 We do >> 2 since each 32-bit entry of the tile-buffer holds 4 tile IDs

*/

 addr_tile_buffer <= (vcount * 10) + (background_line_pointer >> 2);

 /* Calculate the address into the tile graphics memory for the current

line

 of the current tile being processed */

 case (background_line_pointer[1:0])

 1: begin

 addr_tile_graphics <= (read_data_tile_buffer[6:0] * 16) +

(background_line_pointer - 1);

 background_line_palette_buffer[background_line_pointer - 1] <=

read_data_tile_buffer[7];

 end

 2: begin

 addr_tile_graphics <= (read_data_tile_buffer[14:8] * 16) +

(background_line_pointer - 1);

 background_line_palette_buffer[background_line_pointer - 1] <=

read_data_tile_buffer[15];

 end

 3: begin

 addr_tile_graphics <= (read_data_tile_buffer[22:16] * 16) +

(background_line_pointer - 1);

 background_line_palette_buffer[background_line_pointer - 1] <=

read_data_tile_buffer[23];

 end

 0: begin

 addr_tile_graphics <= (read_data_tile_buffer[30:24] * 16) +

(background_line_pointer - 1);

 background_line_palette_buffer[background_line_pointer - 1] <=

read_data_tile_buffer[31];

 end

38

 endcase

 background_line_pointer <= background_line_pointer + 1;

 end

 else if (background_line_pointer < 40) begin

 rw_tile_buffer <= 0; //Set tile buffer memory to read

 rw_tile_graphics <= 0;

 /*Calculate address into the tile buffer for current tile being

processed.

 We do >> 2 since each 32-bit entry of the tile-buffer holds 4 tile IDs

*/

 addr_tile_buffer <= (vcount * 10) + (background_line_pointer >> 2);

 /* Calculate the address into the tile graphics memory for the current

line

 of the current tile being processed */

 case (background_line_pointer[1:0])

 1: begin

 addr_tile_graphics <= (read_data_tile_buffer[6:0] * 16) +

(background_line_pointer - 1);

 background_line_palette_buffer[background_line_pointer - 1] <=

read_data_tile_buffer[7];

 end

 2: begin

 addr_tile_graphics <= (read_data_tile_buffer[14:8] * 16) +

(background_line_pointer - 1);

 background_line_palette_buffer[background_line_pointer - 1] <=

read_data_tile_buffer[15];

 end

 3: begin

39

 addr_tile_graphics <= (read_data_tile_buffer[22:16] * 16) +

(background_line_pointer - 1);

 background_line_palette_buffer[background_line_pointer - 1] <=

read_data_tile_buffer[23];

 end

 0: begin

 addr_tile_graphics <= (read_data_tile_buffer[30:24] * 16) +

(background_line_pointer - 1);

 background_line_palette_buffer[background_line_pointer - 1] <=

read_data_tile_buffer[31];

 end

 endcase

 background_line_graphics_buffer[(background_line_pointer - 1)] <=

read_data_tile_graphics;

 background_line_pointer <= background_line_pointer + 1;

 end

 else if (background_line_pointer == 40) begin

 rw_tile_buffer <= 0; //Set tile buffer memory to read

 rw_tile_graphics <= 0;

 addr_tile_buffer <= 0;

 /* Calculate the address into the tile graphics memory for the current

line

 of the current tile being processed */

 case (background_line_pointer[1:0])

 1: begin

 addr_tile_graphics <= (read_data_tile_buffer[6:0] * 16) +

(background_line_pointer - 1);

 background_line_palette_buffer[background_line_pointer - 1] <=

read_data_tile_buffer[7];

 end

40

 2: begin

 addr_tile_graphics <= (read_data_tile_buffer[14:8] * 16) +

(background_line_pointer - 1);

 background_line_palette_buffer[background_line_pointer - 1] <=

read_data_tile_buffer[15];

 end

 3: begin

 addr_tile_graphics <= (read_data_tile_buffer[22:16] * 16) +

(background_line_pointer - 1);

 background_line_palette_buffer[background_line_pointer - 1] <=

read_data_tile_buffer[23];

 end

 0: begin

 addr_tile_graphics <= (read_data_tile_buffer[30:24] * 16) +

(background_line_pointer - 1);

 background_line_palette_buffer[background_line_pointer - 1] <=

read_data_tile_buffer[31];

 end

 endcase

 background_line_graphics_buffer[(background_line_pointer - 1)] <=

read_data_tile_graphics;

 background_line_pointer <= background_line_pointer + 1;

 end

 else if (background_line_pointer == 41) begin

 rw_tile_buffer <= 0; //Set tile buffer memory to read

 rw_tile_graphics <= 0;

 addr_tile_buffer <= 0;

 addr_tile_graphics <= 0;

 background_line_graphics_buffer[background_line_pointer - 1] <=

read_data_tile_graphics;

41

 background_line_pointer <= background_line_pointer + 1;

 end

 else begin

 rw_tile_buffer <= 0; //Set tile buffer memory to read

 rw_tile_graphics <= 0;

 addr_tile_buffer <= 0;

 addr_tile_graphics <= 0;

 end

 //Detect which sprites are on the line

 if (sprites_on_line_pointer < 128) begin

 //If current sprite is on the line and we have not filled all the

sprite slots

 if (sprites_found < 8 && (vcount >=

sprite_y_buffer[sprites_on_line_pointer]) && (vcount <

sprite_y_buffer[sprites_on_line_pointer] + 16)) begin

 sprites_on_line[sprites_found] <= sprites_on_line_pointer;

 sprites_on_line_palettes[sprites_found] <=

sprite_palette_buffer[sprites_on_line_pointer];

 sprites_found <= sprites_found + 1;

 end

 sprites_on_line_pointer <= sprites_on_line_pointer + 1;

 end

 //Calculate pointers to sprite graphics based on rotation flags, what line

we are on, and the sprites' Y positions

 else if (shift_register_load_pointer == 0) begin

 rw_sprite_graphics <= 0;

 // If vertical flip bit is set

 if

(sprite_rotation_buffer[sprites_on_line[shift_register_load_pointer]][1])

addr_sprite_graphics <=

((sprite_tile_id_buffer[sprites_on_line[shift_register_load_pointer]]) * 16) + (15 -

(vcount - sprite_y_buffer[sprites_on_line[shift_register_load_pointer]]));

42

 // If vertical flip bit is not set

 else addr_sprite_graphics <=

((sprite_tile_id_buffer[sprites_on_line[shift_register_load_pointer]]) * 16) + (vcount

- sprite_y_buffer[sprites_on_line[shift_register_load_pointer]]);

 shift_register_load_pointer <= shift_register_load_pointer + 1;

 end

 else if (shift_register_load_pointer < 8) begin

 rw_sprite_graphics <= 0;

 // If vertical flip bit is set

 if

(sprite_rotation_buffer[sprites_on_line[shift_register_load_pointer]][1])

addr_sprite_graphics <=

((sprite_tile_id_buffer[sprites_on_line[shift_register_load_pointer]]) * 16) + (15 -

(vcount - sprite_y_buffer[sprites_on_line[shift_register_load_pointer]]));

 // If vertical flip bit is not set

 else addr_sprite_graphics <=

((sprite_tile_id_buffer[sprites_on_line[shift_register_load_pointer]]) * 16) + (vcount

- sprite_y_buffer[sprites_on_line[shift_register_load_pointer]]);

 //Check against sprites_found to make sure we don't load garbage data

into the graphics buffers

 if (sprites_on_line_pointer <= sprites_found) begin

 // If horizontal flip bit is set

 //if

(sprite_rotation_buffer[sprites_on_line[shift_register_load_pointer]][0])

sprite_graphics_buffer[shift_register_load_pointer - 1][31:0] <=

read_data_sprite_graphics[0:31];

 if

(sprite_rotation_buffer[sprites_on_line[shift_register_load_pointer]][0]) begin

 // horizontal‐flip: reverse all bits

 sprite_graphics_buffer[shift_register_load_pointer-1] <=

bit_reverse32(read_data_sprite_graphics);

 end // If horizontal flip bit is not set

 else sprite_graphics_buffer[shift_register_load_pointer - 1] <=

read_data_sprite_graphics;

 end

43

 //If sprite slot is empty, fill place in sprite graphics buffer with

zeros

 else sprite_graphics_buffer[shift_register_load_pointer - 1] <= 0;

 shift_register_load_pointer <= shift_register_load_pointer + 1;

 end

 else if (shift_register_load_pointer == 8) begin

 rw_sprite_graphics <= 0;

 addr_sprite_graphics <= 0;

 //Check against sprites_found to make sure we don't load garbage data

into the graphic buffers

 if (sprites_on_line_pointer <= sprites_found) begin

 // If horizontal flip bit is set

 //if

(sprite_rotation_buffer[sprites_on_line[shift_register_load_pointer]][0])

sprite_graphics_buffer[shift_register_load_pointer - 1][31:0] <=

read_data_sprite_graphics[0:31];

 if

(sprite_rotation_buffer[sprites_on_line[shift_register_load_pointer]][0]) begin

 // horizontal‐flip: reverse all 32 bits

 sprite_graphics_buffer[shift_register_load_pointer-1]

 <= bit_reverse32(read_data_sprite_graphics);

// If horizontal flip bit is not set

 end else sprite_graphics_buffer[shift_register_load_pointer - 1] <=

read_data_sprite_graphics;

 end

 //If sprite slot is empty, fill place in sprite graphics buffer with

zeros

 else sprite_graphics_buffer[shift_register_load_pointer - 1] <= 0;

 shift_register_load_pointer <= shift_register_load_pointer + 1;

 end

 else if (shift_register_load_pointer == 9) begin

 rw_sprite_graphics <= 0;

 addr_sprite_graphics <= 0;

44

 shift_load_sprite <= 1;

 shift_load_data[7:0] <= sprite_graphics_buffer;

 shift_load_background <= 1;

 shift_load_data[8] <= background_line_graphics_buffer[0];

 shift_register_load_pointer <= shift_register_load_pointer + 1;

 end

 else begin

 shift_load_sprite <= 0;

 rw_sprite_graphics <= 0;

 addr_sprite_graphics <= 0;

 end

 end

 else begin

 //Reset vblank and hsync memory pointers

 cords_sprite_load <= 0;

 palette_sprite_load <= 0;

 palette_ram_pointer <= 0;

 background_line_pointer <= 0;

 sprite_graphics_pointer <= 0;

 sprites_on_line_pointer <= 0;

 sprites_found <= 0;

 shift_register_load_pointer <= 0;

 for (int i = 0; i < 8; i += 1) begin

 sprites_on_line_palettes[i] <= 0;

 end

 shift_load_sprite <= 0;

 priority_palette_data_out <= {background_line_palette_buffer[hcount[10:5]],

sprites_on_line_palettes};

 //Logic to load new background tile and palette into shift registers

 if (hcount[4:0] == 5'b11111) begin

 shift_load_data[8] <= background_line_graphics_buffer[hcount[10:5]];

 shift_load_background <= 1;

 end

45

 else shift_load_background <= 0;

 //Logic to handle pixel doubling

 if (hcount[0]) begin

 shift_enable[8] <= 1;

 //Logic to enable and disable shift registers

 for (int i = 0; i < 8; i += 1) begin

 if ((sprite_x_buffer[sprites_on_line[i]] >= hcount[10:1]) &&

((sprite_x_buffer[sprites_on_line[i]] < hcount[10:1] + 16)))

 shift_enable[i] <= 1;

 else

 shift_enable[i] <= 0;

 end

 end else shift_enable <= 0;

 //Convert pixel data to colors

 pixel_color <= color_palette_buffer[priority_pixel_data_in + (4 *

priority_palette_data_in)];

 end

 end

function automatic logic [31:0] bit_reverse32(input logic [31:0] in);

 for (int i = 0; i < 32; i++)

 bit_reverse32[i] = in[31 - i];

endfunction

endmodule

46

8.1.4 ppu_top.sv
module ppu_top(

 input logic clk,

 input logic reset,

 input logic [31:0] write_data,

 input logic [12:0] address,

 input logic write,

 input chipselect,

 output logic irq,

 output logic [7:0] VGA_R,

 output logic [7:0] VGA_G,

 output logic [7:0] VGA_B,

 output logic VGA_CLK, VGA_HS, VGA_VS, VGA_BLANK_n, VGA_SYNC_n

);

 //PPU RW Signals to Memories

 logic ppu_rw_tile_buffer;

 logic ppu_rw_tile_graphics;

 logic ppu_rw_sprite_graphics;

 logic ppu_rw_color_palettes;

 logic ppu_rw_OAM;

 //CPU RW Signals to Memories

 logic cpu_rw_tile_buffer;

 logic cpu_rw_tile_graphics;

 logic cpu_rw_sprite_graphics;

 logic cpu_rw_color_palettes;

 logic cpu_rw_OAM;

 //PPU Write Data to Memories

 logic [31:0] ppu_write_data_tile_buffer;

 logic [31:0] ppu_write_data_tile_graphics;

 logic [31:0] ppu_write_data_sprite_graphics;

 logic [31:0] ppu_write_data_OAM;

 logic [23:0] ppu_write_data_color_palettes;

 //CPU Write Data to Memories

 logic [31:0] cpu_write_data_tile_buffer;

 logic [31:0] cpu_write_data_tile_graphics;

 logic [31:0] cpu_write_data_sprite_graphics;

47

 logic [31:0] cpu_write_data_OAM;

 logic [23:0] cpu_write_data_color_palettes;

 //PPU Address Signals to Memories

 logic [8:0] ppu_addr_tile_buffer;

 logic [10:0] ppu_addr_tile_graphics;

 logic [10:0] ppu_addr_sprite_graphics;

 logic [2:0] ppu_addr_color_palettes;

 logic [7:0] ppu_addr_OAM;

 //CPU Address Signals to Memories

 logic [8:0] cpu_addr_tile_buffer;

 logic [10:0] cpu_addr_tile_graphics;

 logic [10:0] cpu_addr_sprite_graphics;

 logic [2:0] cpu_addr_color_palettes;

 logic [7:0] cpu_addr_OAM;

 //PPU Read Data from Memories

 logic [31:0] ppu_read_data_tile_buffer;

 logic [31:0] ppu_read_data_tile_graphics;

 logic [31:0] ppu_read_data_sprite_graphics;

 logic [31:0] ppu_read_data_OAM;

 logic [23:0] ppu_read_data_color_palettes;

 //VGA Singals

 logic [10:0] hcount;

 logic [9:0] vcount;

 logic [23:0] pixel_color;

 logic vblank;

 //Shift Register Signals

 logic [31:0] shift_load_data [8:0];

 logic [8:0] shift_enable;

 logic shift_load_sprite;

 logic shift_load_background;

 //Priority Encoder Signals

 logic priority_palette_data_asm_to_encoder [8:0];

 logic [1:0] priority_pixel_data_encoder_to_asm;

 logic priority_palette_data_encoder_to_asm;

 logic [1:0] priority_pixel_data_shifter_to_encoder [8:0];

48

 addr_decode decoder(

 .addr(address),

 .write_data(write_data),

 .chip_select(chipselect),

 .write(write),

 .rw_tile_buffer(cpu_rw_tile_buffer),

 .rw_tile_graphics(cpu_rw_tile_graphics),

 .rw_sprite_graphics(cpu_rw_sprite_graphics),

 .rw_color_palettes(cpu_rw_color_palettes),

 .rw_OAM(cpu_rw_OAM),

 .write_data_tile_buffer(cpu_write_data_tile_buffer),

 .write_data_tile_graphics(cpu_write_data_tile_graphics),

 .write_data_sprite_graphics(cpu_write_data_sprite_graphics),

 .write_data_OAM(cpu_write_data_OAM),

 .write_data_color_palettes(cpu_write_data_color_palettes),

 .addr_tile_buffer(cpu_addr_tile_buffer),

 .addr_tile_graphics(cpu_addr_tile_graphics),

 .addr_sprite_graphics(cpu_addr_sprite_graphics),

 .addr_color_palettes(cpu_addr_color_palettes),

 .addr_OAM(cpu_addr_OAM)

);

 tile_buffer tile_buffer_mem (

 .clk(clk),

 .rw_1(ppu_rw_tile_buffer),

 .rw_2(cpu_rw_tile_buffer),

 .write_data_1(ppu_write_data_tile_buffer),

 .write_data_2(cpu_write_data_tile_buffer),

 .addr_1(ppu_addr_tile_buffer),

 .addr_2(cpu_addr_tile_buffer),

 .read_data_1(ppu_read_data_tile_buffer),

 .read_data_2()

);

 tile_graphics tile_graphics_mem (

 .clk(clk),

 .rw_1(ppu_rw_tile_graphics),

 .rw_2(cpu_rw_tile_graphics),

 .write_data_1(ppu_write_data_tile_graphics),

 .write_data_2(cpu_write_data_tile_graphics),

 .addr_1(ppu_addr_tile_graphics),

49

 .addr_2(cpu_addr_tile_graphics),

 .read_data_1(ppu_read_data_tile_graphics),

 .read_data_2()

);

 sprite_graphics sprite_graphics_mem (

 .clk(clk),

 .rw_1(ppu_rw_sprite_graphics),

 .rw_2(cpu_rw_sprite_graphics),

 .write_data_1(ppu_write_data_sprite_graphics),

 .write_data_2(cpu_write_data_sprite_graphics),

 .addr_1(ppu_addr_sprite_graphics),

 .addr_2(cpu_addr_sprite_graphics),

 .read_data_1(ppu_read_data_sprite_graphics),

 .read_data_2()

);

 color_palettes color_palettes_mem(

 .clk(clk),

 .rw_1(ppu_rw_color_palettes),

 .rw_2(cpu_rw_color_palettes),

 .write_data_1(ppu_write_data_color_palettes),

 .write_data_2(cpu_write_data_color_palettes),

 .addr_1(ppu_addr_color_palettes),

 .addr_2(cpu_addr_color_palettes),

 .read_data_1(ppu_read_data_color_palettes),

 .read_data_2()

);

 OAM OAM_mem (

 .clk(clk),

 .rw_1(ppu_rw_OAM),

 .rw_2(cpu_rw_OAM),

 .write_data_1(ppu_write_data_OAM),

 .write_data_2(cpu_write_data_OAM),

 .addr_1(ppu_addr_OAM),

 .addr_2(cpu_addr_OAM),

 .read_data_1(ppu_read_data_OAM),

 .read_data_2()

);

50

 PPU_asm asm(

 .clk(clk),

 .reset(reset),

 .hcount(hcount),

 .vcount(vcount),

 .vblank(vblank),

 .hsync(VGA_HS),

 .pixel_color(pixel_color),

 .rw_tile_buffer(ppu_rw_tile_buffer),

 .rw_tile_graphics(ppu_rw_tile_graphics),

 .rw_sprite_graphics(ppu_rw_sprite_graphics),

 .rw_color_palettes(ppu_rw_color_palettes),

 .rw_OAM(ppu_rw_OAM),

 .write_data_tile_buffer(ppu_write_data_tile_buffer),

 .write_data_tile_graphics(ppu_write_data_tile_graphics),

 .write_data_sprite_graphics(ppu_write_data_sprite_graphics),

 .write_data_OAM(ppu_write_data_OAM),

 .write_data_color_palettes(ppu_write_data_color_palettes),

 .addr_tile_buffer(ppu_addr_tile_buffer),

 .addr_tile_graphics(ppu_addr_tile_graphics),

 .addr_sprite_graphics(ppu_addr_sprite_graphics),

 .addr_color_palettes(ppu_addr_color_palettes),

 .addr_OAM(ppu_addr_OAM),

 .read_data_tile_buffer(ppu_read_data_tile_buffer),

 .read_data_tile_graphics(ppu_read_data_tile_graphics),

 .read_data_sprite_graphics(ppu_read_data_sprite_graphics),

 .read_data_OAM(ppu_read_data_OAM),

 .read_data_color_palettes(ppu_read_data_color_palettes),

 .shift_load_data(shift_load_data),

 .shift_enable(shift_enable),

 .shift_load_sprite(shift_load_sprite),

 .shift_load_background(shift_load_background),

 .priority_palette_data_out(priority_palette_data_asm_to_encoder),

 .priority_pixel_data_in(priority_pixel_data_encoder_to_asm),

 .priority_palette_data_in(priority_palette_data_encoder_to_asm)

);

 combined_priority_encoder priority_encoder (

 .pixel_data_in(priority_pixel_data_shifter_to_encoder),

 .palette_data_in(priority_palette_data_asm_to_encoder),

 .pixel_data_out(priority_pixel_data_encoder_to_asm),

51

 .palette_data_out(priority_palette_data_encoder_to_asm)

);

 shift_register_block shift_registers (

 .load_data(shift_load_data),

 .clk(clk),

 .reset(reset),

 .load_sprite(shift_load_sprite),

 .load_background(shift_load_background),

 .enable(shift_enable),

 .out_data(priority_pixel_data_shifter_to_encoder)

);

 vga vga_inst(

 .clk(clk),

 .reset(reset),

 .pixel_color(pixel_color),

 .VGA_R(VGA_R),

 .VGA_G(VGA_G),

 .VGA_B(VGA_B),

 .VGA_CLK(VGA_CLK),

 .VGA_HS(VGA_HS),

 .VGA_VS(VGA_VS),

 .VGA_BLANK_n(VGA_BLANK_n),

 .VGA_SYNC_n(VGA_SYNC_n),

 .VGA_vBLANK(vblank),

 .hcount(hcount),

 .vcount(vcount)

);

endmodule

52

8.1.5 priority_encoder.sv
module combined_priority_encoder(

 input logic [1:0] pixel_data_in [8:0],

 input logic palette_data_in [8:0],

 output logic [1:0] pixel_data_out,

 output logic palette_data_out

);

localparam logic [1:0] TRANSPARENT = 2'b00;

logic [2:0] stage_0 [8:0];

logic [2:0] stage_1 [3:0];

logic [2:0] stage_2 [1:0];

logic [2:0] stage_3;

always_comb begin

 // pack palette+pixel

 for (int i = 0; i < 9; i += 1)

 stage_0[i] = { palette_data_in[i], pixel_data_in[i] };

 // First Stage (pairwise)

 if (stage_0[0][1:0] == TRANSPARENT) stage_1[0] = stage_0[1];

 else stage_1[0] = stage_0[0];

 if (stage_0[2][1:0] == TRANSPARENT) stage_1[1] = stage_0[3];

 else stage_1[1] = stage_0[2];

 if (stage_0[4][1:0] == TRANSPARENT) stage_1[2] = stage_0[5];

 else stage_1[2] = stage_0[4];

 if (stage_0[6][1:0] == TRANSPARENT) stage_1[3] = stage_0[7];

 else stage_1[3] = stage_0[6];

 // Second Stage

 if (stage_1[0][1:0] == TRANSPARENT) stage_2[0] = stage_1[1];

 else stage_2[0] = stage_1[0];

 if (stage_1[2][1:0] == TRANSPARENT) stage_2[1] = stage_1[3];

 else stage_2[1] = stage_1[2];

 // Third Stage

 if (stage_2[0][1:0] == TRANSPARENT) stage_3 = stage_2[1];

 else stage_3 = stage_2[0];

53

 // Fourth Stage (vs slot 8)

 if (stage_3[1:0] == TRANSPARENT)

 { palette_data_out, pixel_data_out } = stage_0[8];

 else

 { palette_data_out, pixel_data_out } = stage_3;

end

endmodule

8.1.6 shift_registers.sv
module shift_register(

 input logic [31:0] load_data,

 input logic enable, clk, reset, load,

 output logic [1:0] out_data

);

logic [31:0] shift_buffer;

assign out_data = shift_buffer[1:0];

always @(posedge clk) begin

 if (reset) shift_buffer <= 0;

 else if (load) shift_buffer <= load_data;

 else if (enable) shift_buffer <= shift_buffer >> 2;

end

endmodule

module shift_register_block(

 input logic [31:0] load_data [8:0],

 input logic clk, reset, load_sprite, load_background,

 input logic [8:0] enable,

 output logic [1:0] out_data [8:0]

);

 generate

 genvar i;

54

 for (i=0; i<8; i = i + 1) shift_register sprite_shift (load_data[i], enable[i],

clk, reset, load_sprite, out_data[i]);

 endgenerate

 shift_register background_shift (load_data[8], enable[8], clk, reset,

load_background, out_data[8]);

endmodule

8.1.7 vga.sv
module vga(

 input logic clk,

 input logic reset,

 input logic [23:0] pixel_color,

 output logic [7:0] VGA_R, VGA_G, VGA_B,

 output logic VGA_CLK, VGA_HS, VGA_VS, VGA_BLANK_n, VGA_SYNC_n, VGA_vBLANK,

 output logic [10:0] hcount,

 output logic [9:0] vcount

);

vga_counters counters(.clk50(clk), .*);

always_ff @(posedge clk)

 if (reset) begin

 VGA_R <= 8'h0;

 VGA_G <= 8'h0;

 VGA_B <= 8'h0;

 end else begin

 VGA_R <= pixel_color[23:16];

 VGA_G <= pixel_color[15:8];

 VGA_B <= pixel_color[7:0];

 end

endmodule

module vga_counters(

input logic clk50, reset,

output logic [10:0] hcount, // hcount[10:1] is pixel column

output logic [9:0] vcount, // vcount[9:0] is pixel row

output logic VGA_CLK, VGA_HS, VGA_VS, VGA_BLANK_n, VGA_SYNC_n, VGA_vBLANK);

55

/*

* 640 X 480 VGA timing for a 50 MHz clock: one pixel every other cycle

*

* HCOUNT 1599 0 1279 1599 0

* _______________ ________

* ___________| Video |____________| Video

*

*

* |SYNC| BP |<-- HACTIVE -->|FP|SYNC| BP |<-- HACTIVE

* _______________________ _____________

* |____| VGA_HS |____|

*/

 // Parameters for hcount

 parameter HACTIVE = 11'd 1280,

 HFRONT_PORCH = 11'd 32,

 HSYNC = 11'd 192,

 HBACK_PORCH = 11'd 96,

 HTOTAL = HACTIVE + HFRONT_PORCH + HSYNC +

 HBACK_PORCH; // 1600

 // Parameters for vcount

 parameter VACTIVE = 10'd 480,

 VFRONT_PORCH = 10'd 10,

 VSYNC = 10'd 2,

 VBACK_PORCH = 10'd 33,

 VTOTAL = VACTIVE + VFRONT_PORCH + VSYNC +

 VBACK_PORCH; // 525

 logic endOfLine;

 always_ff @(posedge clk50 or posedge reset)

 if (reset) hcount <= 0;

 else if (endOfLine) hcount <= 0;

 else hcount <= hcount + 11'd 1;

 assign endOfLine = hcount == HTOTAL - 1;

 logic endOfField;

 always_ff @(posedge clk50 or posedge reset)

 if (reset) vcount <= 0;

 else if (endOfLine)

56

 if (endOfField) vcount <= 0;

 else vcount <= vcount + 10'd 1;

 assign endOfField = vcount == VTOTAL - 1;

 // Horizontal sync: from 0x520 to 0x5DF (0x57F)

 // 101 0010 0000 to 101 1101 1111

 assign VGA_HS = !((hcount[10:8] == 3'b101) &

 !(hcount[7:5] == 3'b111));

 assign VGA_VS = !(vcount[9:1] == (VACTIVE + VFRONT_PORCH) / 2);

 assign VGA_SYNC_n = 1'b0; // For putting sync on the green signal; unused

 // Horizontal active: 0 to 1279 Vertical active: 0 to 479

 // 101 0000 0000 1280 01 1110 0000 480

 // 110 0011 1111 1599 10 0000 1100 524

 assign VGA_BLANK_n = !(hcount[10] & (hcount[9] | hcount[8])) &

 !(vcount[9] | (vcount[8:5] == 4'b1111));

 assign VGA_vBLANK = (vcount[9] | (vcount[8:5] == 4'b1111));

 /* VGA_CLK is 25 MHz

 * __ __ __

 * clk50 __| |__| |__|

 *

 * _____ __

 * hcount[0]__| |_____|

 */

 assign VGA_CLK = hcount[0]; // 25 MHz clock: rising edge sensitive

endmodule

57

8.2. Tile Hardware

8.2.1 tiles.sv
/*

Modified version of tiles.sv. Original version provided by Professor Stephen Edwards

https://www.cs.columbia.edu/~sedwards/classes/2025/4840-spring/tiles.pdf

*/

module tiles

 (input logic VGA_CLK, VGA_RESET,

 output logic [7:0] VGA_R, VGA_G, VGA_B,

 output logic VGA_HS, VGA_VS, VGA_BLANK_n,

 input logic mem_clk, // Clock for memory ports

 input logic [12:0] tm_address, // Tilemap memory port

 input logic tm_we,

 input logic [7:0] tm_din,

 output logic [7:0] tm_dout,

 input logic [13:0] ts_address, // Tileset memory port

 input logic ts_we,

 input logic [3:0] ts_din,

 output logic [3:0] ts_dout,

 input logic [3:0] palette_address, // Palette memory port

 input logic palette_we,

 input logic [23:0] palette_din,

 output logic [23:0] palette_dout);

 logic [9:0] hcount; // From counters

 logic [8:0] vcount;

 logic [2:0] hcount1; // Pipeline registers

 logic VGA_HS0, VGA_HS1, VGA_HS2;

 logic VGA_BLANK_n0, VGA_BLANK_n1, VGA_BLANK_n2;

 logic [7:0] tilenumber; // Memory outputs

 logic [3:0] colorindex;

58

 /* verilator lint_off UNUSED */

 logic unconnected; // Extra vcount bit from counters

 /* verilator lint_on UNUSED */

 // Frame-snapshot helper signals

 logic [12:0] copy_addr; //8 KiB tile map

 logic copying; //Actively copying

 logic copy_we; //write-enable for the display side cache

 logic [7:0] tm_cpu_dout; //Data coming from the CPU side RAM to the display side

cache

 logic copying_d1;

 logic [12:0] copy_addr_d1;

 always_ff @(posedge VGA_CLK) begin

 copying_d1 <= copying;

 copy_addr_d1 <= copy_addr;

 end

 assign copy_we = copying_d1;

 vga_counters cntrs(.vcount({unconnected, vcount}), // VGA Counters

 .VGA_BLANK_n(VGA_BLANK_n0),

 .VGA_HS(VGA_HS0),

 .*);

 //CPU side tile RAM

 //port-A (clk = mem_clk) from Avalon bus

 //port-B (clk = VGA_CLK) to frame cacher

 twoportbram #(.DATA_BITS(8), .ADDRESS_BITS(13)) tilemap_cpu (

 .clk1 (mem_clk),

 .addr1 (tm_address),

 .we1 (tm_we),

 .din1 (tm_din),

 .dout1 (tm_dout),

 .clk2 (VGA_CLK),

 .addr2 (copy_addr),

 .we2 (1'b0),

 .din2 (8'hxx),

 .dout2 (tm_cpu_dout)

);

59

 //Display side tile cache

 //port-A (clk = VGA_CLK) from pixel pipeline

 //port-B (clk = VGA_CLK) to frame cacher (writes)

 twoportbram #(.DATA_BITS(8), .ADDRESS_BITS(13)) tilemap_disp (

 .clk1 (VGA_CLK),

 .addr1 ({ vcount[8:3], hcount[9:3] }),

 .we1 (1'b0),

 .din1 (8'hxx),

 .dout1 (tilenumber),

 .clk2 (VGA_CLK),

 .addr2 (copy_addr_d1),

 .we2 (copy_we),

 .din2 (tm_cpu_dout),

 .dout2 ()

);

 //Per-frame cacher (runs during vblank)

 //starts at the first pixel of vblank (vcount = 480, hcount = 0)

 always_ff @(posedge VGA_CLK or posedge VGA_RESET) begin

 if (VGA_RESET) begin

 copying <= 1'b0;

 copy_addr <= 13'd0;

 end else begin

 if (!copying && hcount == 10'd0 && vcount == 10'd480) begin //start of vblank

 //start caching

 copying <= 1'b1;

 copy_addr <= 13'd0;

 end else if (copying) begin

 copy_addr <= copy_addr + 13'd1;

 if (copy_addr == 13'd8191) //finished copying tile map into the cache

 copying <= 1'b0;

 end

 end

 end

 always_ff @(posedge VGA_CLK) // Pipeline registers

 { hcount1, VGA_BLANK_n1, VGA_HS1 } <=

 { hcount[2:0], VGA_BLANK_n0, VGA_HS0 };

60

 twoportbram #(.DATA_BITS(4), .ADDRESS_BITS(14)) // Tile Set

 tileset(.clk1 (VGA_CLK), .clk2 (mem_clk),

 .addr1 ({ tilenumber, vcount[2:0], hcount1 }),

 .we1 (1'b0), .din1(4'hx), .dout1(colorindex),

 .addr2 (ts_address),

 .we2 (ts_we), .din2(ts_din), .dout2(ts_dout));

 always_ff @(posedge VGA_CLK) // Pipeline registers

 { VGA_BLANK_n2, VGA_HS2 } <= { VGA_BLANK_n1, VGA_HS1 };

 twoportbram #(.DATA_BITS(24), .ADDRESS_BITS(4)) // Palette

 palette(.clk1 (VGA_CLK), .clk2 (mem_clk),

 .addr1 (colorindex),

 .we1 (1'b0), .din1(24'hx), .dout1({ VGA_B, VGA_G, VGA_R }),

 .addr2 (palette_address),

 .we2 (palette_we), .din2(palette_din), .dout2(palette_dout));

 always_ff @(posedge VGA_CLK) // Pipeline registers

 { VGA_BLANK_n, VGA_HS } <= { VGA_BLANK_n2, VGA_HS2 };

endmodule

8.2.2 twoportbram.sv
/*

twoportbram.sv provided by Professor Stephen Edwards

https://www.cs.columbia.edu/~sedwards/classes/2025/4840-spring/tiles.pdf

*/

module twoportbram

 #(parameter int DATA_BITS = 8, ADDRESS_BITS = 10)

 (input logic clk1, clk2,

 input logic [ADDRESS_BITS-1:0] addr1, addr2,

 input logic [DATA_BITS-1:0] din1, din2,

 input logic we1, we2,

 output logic [DATA_BITS-1:0] dout1, dout2);

 localparam WORDS = 1 << ADDRESS_BITS;

61

 /* verilator lint_off MULTIDRIVEN */

 logic [DATA_BITS-1:0] mem [WORDS-1:0];

 /* verilator lint_on MULTIDRIVEN */

 always_ff @(posedge clk1)

 if (we1) begin

 mem[addr1] <= din1;

 dout1 <= din1;

 end else dout1 <= mem[addr1];

 always_ff @(posedge clk2)

 if (we2) begin

 mem[addr2] <= din2;

 dout2 <= din2;

 end else dout2 <= mem[addr2];

endmodule

8.2.3 vga_counters.sv
/*

vga_counters.sv provided by Professor Stephen Edwards

https://www.cs.columbia.edu/~sedwards/classes/2025/4840-spring/tiles.pdf

*/

module vga_counters(

 input logic VGA_CLK, VGA_RESET,

 output logic [9:0] hcount, // 0-639 active, 640-799 blank/sync

 output logic [9:0] vcount, // 0-479 active, 480-524 blank/sync

 output logic VGA_HS, VGA_VS, VGA_BLANK_n);

 logic endOfLine;

 assign endOfLine = hcount == 10'd 799;

 always_ff @(posedge VGA_CLK or posedge VGA_RESET)

 if (VGA_RESET) hcount <= 10'd 797;

 else if (endOfLine) hcount <= 0;

 else hcount <= hcount + 10'd 1;

 logic endOfFrame;

 assign endOfFrame = vcount == 10'd 524;

62

 always_ff @(posedge VGA_CLK or posedge VGA_RESET)

 if (VGA_RESET) vcount <= 10'd 524;

 else if (endOfLine)

 if (endOfFrame) vcount <= 10'd 0;

 else vcount <= vcount + 10'd 1;

 // 656 <= hcount <= 751

 assign VGA_HS = !(hcount[9:7] == 3'b101 &

 hcount[6:4] != 3'b000 & hcount[6:4] != 3'b111);

 assign VGA_VS = !(vcount[9:1] == 9'd 245); // Lines 490 and 491

 // hcount < 640 && vcount < 480

 assign VGA_BLANK_n = !(hcount[9] & (hcount[8] | hcount[7])) &

 !(vcount[9] | (vcount[8:5] == 4'b1111));

endmodule

8.2.4 vga_tiles.sv
/*

vga_tiles.sv provided by Professor Stephen Edwards

https://www.cs.columbia.edu/~sedwards/classes/2025/4840-spring/tiles.pdf

*/

/*

* Avalon memory-mapped agent peripheral that produces a VGA tile display

*

* Stephen A. Edwards

* Columbia University

*

* Memory map:

*

* 0000 - 1FFF Tilemap (8K, tile number is 8 bits per byte)

* 2000 - 203F Palette (64, 24 bits every 4 bytes)

* 4000 - 7FFF Tileset (16K, color index is lower 4 bits of each byte)

*

* 00m mmmm mmmm mmmm Tilemap

* 010 0000 00pp ppbb Palette

* 1ss ssss ssss ssss Tileset

*

* In the 64-byte palette region, every color occupies 4 bytes, although

63

* only 24 bits are stored. Writing to the first 3 bytes in each group

* writes a byte into the 24-bit color register. Writing to the fourth

* byte writes the color register to the palette memory; any data written to

* these addresses is ignored; they always read 0.

*

* | Offset | On Write | On Read |

* +--------+----------------------+-------------------+

* | 0 | creg[7:0] <- data | palette[0].red |

* | 1 | creg[15:8] <- data | palette[0].green |

* | 2 | creg[23:16] <- data | palette[0].blue |

* | 3 | palette[0] <- creg | Always 0 |

* | 4 | creg[7:0] <- data | palette[1].red |

* | 5 | creg[15:8] <- data | palette[1].green |

* | 6 | creg[23:16] <- data | palette[1].blue |

* | 7 | palette[1] <- creg | Always 0 |

* ...

* | 60 | creg[7:0] <- data | palette[15].red |

* | 61 | creg[15:8] <- data | palette[15].green |

* | 62 | creg[23:16] <- data | palette[15].blue |

* | 63 | palette[15] <- creg | Always 0 |

*

*/

module vga_tiles

 (input logic clk, reset, // Avalon MM Agent port

 input logic chipselect, write, // read == chipselect & !write

 input logic [14:0] address, // 32K window

 input logic [7:0] writedata, // 8-bit interface

 output logic [7:0] readdata,

 input logic vga_clk_in, VGA_RESET, // VGA signals

 output logic [7:0] VGA_R, VGA_G, VGA_B,

 output logic VGA_CLK, VGA_HS, VGA_VS, VGA_BLANK_n);

 logic [2:0] creg_write; // Latch enable per byte

 logic tm_we, ts_we, palette_we; // Memory write enables

 logic [7:0] tm_dout; // Data from tilemap

 logic [3:0] ts_dout; // Data from tileset

 logic [23:0] creg, palette_dout; // Data to/from palette

 tiles tiles(.mem_clk (clk),

 .tm_address (address[12:0]), .tm_din (writedata),

 .ts_address (address[13:0]), .ts_din (writedata[3:0]),

64

 .palette_address(address[5:2]), .palette_din(creg), .*);

 assign VGA_CLK = vga_clk_in;

 always_comb begin // Address Decoder

 {tm_we, ts_we, palette_we, creg_write, readdata } = { 6'b 0, 8'h xx };

 if (chipselect)

 if (address[14] == 1'b 1) begin // Tileset 1--------------

 ts_we = write; // Write to tileset mem

 readdata = { 4'h 0, ts_dout }; // Read lower 4 bits; pad upper

 end else if (address[13] == 1'b 0) begin // Tilemap 00-------------

 tm_we = write; // Write to tilemap mem

 readdata = tm_dout; // Read 8 bits

 end else if (address[12:6] == 7'b 0_0000_00) // Palette 010000000------

 case (address[1:0])

 2'h 0 : begin readdata = palette_dout[7:0]; // Read red byte

 creg_write[0] = write; // creg <- red

 end

 2'h 1 : begin readdata = palette_dout[15:8]; // Read green byte

 creg_write[1] = write; // creg <- green

 end

 2'h 2 : begin readdata = palette_dout[23:16]; // Read blue byte

 creg_write[2] = write; // creg <- blue

 end

 2'h 3 : begin readdata = 8'h 00; // Always reads as 00

 palette_we = write; // mem <- creg

 end

 endcase

 end

 always_ff @(posedge clk or posedge reset)

 if (reset) creg <= 24'b 0; else begin

 if (creg_write[0]) creg[7:0] <= writedata; // Write byte (color)

 if (creg_write[1]) creg[15:8] <= writedata; // to creg according to

 if (creg_write[2]) creg[23:16] <= writedata; // creg_write bits

 end

endmodule

65

8.2.5 soc_system_top.sv
// ==

// Copyright (c) 2013 by Terasic Technologies Inc.

// ==

//

// Modified 2019 by Stephen A. Edwards

//

// Permission:

//

// Terasic grants permission to use and modify this code for use

// in synthesis for all Terasic Development Boards and Altera

// Development Kits made by Terasic. Other use of this code,

// including the selling ,duplication, or modification of any

// portion is strictly prohibited.

//

// Disclaimer:

//

// This VHDL/Verilog or C/C++ source code is intended as a design

// reference which illustrates how these types of functions can be

// implemented. It is the user's responsibility to verify their

// design for consistency and functionality through the use of

// formal verification methods. Terasic provides no warranty

// regarding the use or functionality of this code.

//

// ===

//

// Terasic Technologies Inc

// 9F., No.176, Sec.2, Gongdao 5th Rd, East Dist, Hsinchu City, 30070. Taiwan

//

//

// web: http://www.terasic.com/

// email: support@terasic.com

module soc_system_top(

 ///////// ADC /////////

 inout ADC_CS_N,

 output ADC_DIN,

 input ADC_DOUT,

 output ADC_SCLK,

 ///////// AUD /////////

66

 input AUD_ADCDAT,

 inout AUD_ADCLRCK,

 inout AUD_BCLK,

 output AUD_DACDAT,

 inout AUD_DACLRCK,

 output AUD_XCK,

 ///////// CLOCK2 /////////

 input CLOCK2_50,

 ///////// CLOCK3 /////////

 input CLOCK3_50,

 ///////// CLOCK4 /////////

 input CLOCK4_50,

 ///////// CLOCK /////////

 input CLOCK_50,

 ///////// DRAM /////////

 output [12:0] DRAM_ADDR,

 output [1:0] DRAM_BA,

 output DRAM_CAS_N,

 output DRAM_CKE,

 output DRAM_CLK,

 output DRAM_CS_N,

 inout [15:0] DRAM_DQ,

 output DRAM_LDQM,

 output DRAM_RAS_N,

 output DRAM_UDQM,

 output DRAM_WE_N,

 ///////// FAN /////////

 output FAN_CTRL,

 ///////// FPGA /////////

 output FPGA_I2C_SCLK,

 inout FPGA_I2C_SDAT,

 ///////// GPIO /////////

 inout [35:0] GPIO_0,

 inout [35:0] GPIO_1,

67

 ///////// HEX0 /////////

 output [6:0] HEX0,

 ///////// HEX1 /////////

 output [6:0] HEX1,

 ///////// HEX2 /////////

 output [6:0] HEX2,

 ///////// HEX3 /////////

 output [6:0] HEX3,

 ///////// HEX4 /////////

 output [6:0] HEX4,

 ///////// HEX5 /////////

 output [6:0] HEX5,

 ///////// HPS /////////

 inout HPS_CONV_USB_N,

 output [14:0] HPS_DDR3_ADDR,

 output [2:0] HPS_DDR3_BA,

 output HPS_DDR3_CAS_N,

 output HPS_DDR3_CKE,

 output HPS_DDR3_CK_N,

 output HPS_DDR3_CK_P,

 output HPS_DDR3_CS_N,

 output [3:0] HPS_DDR3_DM,

 inout [31:0] HPS_DDR3_DQ,

 inout [3:0] HPS_DDR3_DQS_N,

 inout [3:0] HPS_DDR3_DQS_P,

 output HPS_DDR3_ODT,

 output HPS_DDR3_RAS_N,

 output HPS_DDR3_RESET_N,

 input HPS_DDR3_RZQ,

 output HPS_DDR3_WE_N,

 output HPS_ENET_GTX_CLK,

 inout HPS_ENET_INT_N,

 output HPS_ENET_MDC,

 inout HPS_ENET_MDIO,

 input HPS_ENET_RX_CLK,

68

 input [3:0] HPS_ENET_RX_DATA,

 input HPS_ENET_RX_DV,

 output [3:0] HPS_ENET_TX_DATA,

 output HPS_ENET_TX_EN,

 inout HPS_GSENSOR_INT,

 inout HPS_I2C1_SCLK,

 inout HPS_I2C1_SDAT,

 inout HPS_I2C2_SCLK,

 inout HPS_I2C2_SDAT,

 inout HPS_I2C_CONTROL,

 inout HPS_KEY,

 inout HPS_LED,

 inout HPS_LTC_GPIO,

 output HPS_SD_CLK,

 inout HPS_SD_CMD,

 inout [3:0] HPS_SD_DATA,

 output HPS_SPIM_CLK,

 input HPS_SPIM_MISO,

 output HPS_SPIM_MOSI,

 inout HPS_SPIM_SS,

 input HPS_UART_RX,

 output HPS_UART_TX,

 input HPS_USB_CLKOUT,

 inout [7:0] HPS_USB_DATA,

 input HPS_USB_DIR,

 input HPS_USB_NXT,

 output HPS_USB_STP,

 ///////// IRDA /////////

 input IRDA_RXD,

 output IRDA_TXD,

 ///////// KEY /////////

 input [3:0] KEY,

 ///////// LEDR /////////

 output [9:0] LEDR,

 ///////// PS2 /////////

 inout PS2_CLK,

 inout PS2_CLK2,

 inout PS2_DAT,

69

 inout PS2_DAT2,

 ///////// SW /////////

 input [9:0] SW,

 ///////// TD /////////

 input TD_CLK27,

 input [7:0] TD_DATA,

 input TD_HS,

 output TD_RESET_N,

 input TD_VS,

///////// VGA /////////

 output [7:0] VGA_B,

 output VGA_BLANK_N,

 output VGA_CLK,

 output [7:0] VGA_G,

 output VGA_HS,

 output [7:0] VGA_R,

 output VGA_SYNC_N,

 output VGA_VS

);

 soc_system soc_system0

 (

 .clk_clk (CLOCK_50),

 .reset_reset_n (1'b1),

 .hps_ddr3_mem_a (HPS_DDR3_ADDR),

 .hps_ddr3_mem_ba (HPS_DDR3_BA),

 .hps_ddr3_mem_ck (HPS_DDR3_CK_P),

 .hps_ddr3_mem_ck_n (HPS_DDR3_CK_N),

 .hps_ddr3_mem_cke (HPS_DDR3_CKE),

 .hps_ddr3_mem_cs_n (HPS_DDR3_CS_N),

 .hps_ddr3_mem_ras_n (HPS_DDR3_RAS_N),

 .hps_ddr3_mem_cas_n (HPS_DDR3_CAS_N),

 .hps_ddr3_mem_we_n (HPS_DDR3_WE_N),

 .hps_ddr3_mem_reset_n (HPS_DDR3_RESET_N),

 .hps_ddr3_mem_dq (HPS_DDR3_DQ),

 .hps_ddr3_mem_dqs (HPS_DDR3_DQS_P),

 .hps_ddr3_mem_dqs_n (HPS_DDR3_DQS_N),

 .hps_ddr3_mem_odt (HPS_DDR3_ODT),

70

 .hps_ddr3_mem_dm (HPS_DDR3_DM),

 .hps_ddr3_oct_rzqin (HPS_DDR3_RZQ),

 .hps_hps_io_emac1_inst_TX_CLK (HPS_ENET_GTX_CLK),

 .hps_hps_io_emac1_inst_TXD0 (HPS_ENET_TX_DATA[0]),

 .hps_hps_io_emac1_inst_TXD1 (HPS_ENET_TX_DATA[1]),

 .hps_hps_io_emac1_inst_TXD2 (HPS_ENET_TX_DATA[2]),

 .hps_hps_io_emac1_inst_TXD3 (HPS_ENET_TX_DATA[3]),

 .hps_hps_io_emac1_inst_RXD0 (HPS_ENET_RX_DATA[0]),

 .hps_hps_io_emac1_inst_MDIO (HPS_ENET_MDIO),

 .hps_hps_io_emac1_inst_MDC (HPS_ENET_MDC),

 .hps_hps_io_emac1_inst_RX_CTL (HPS_ENET_RX_DV),

 .hps_hps_io_emac1_inst_TX_CTL (HPS_ENET_TX_EN),

 .hps_hps_io_emac1_inst_RX_CLK (HPS_ENET_RX_CLK),

 .hps_hps_io_emac1_inst_RXD1 (HPS_ENET_RX_DATA[1]),

 .hps_hps_io_emac1_inst_RXD2 (HPS_ENET_RX_DATA[2]),

 .hps_hps_io_emac1_inst_RXD3 (HPS_ENET_RX_DATA[3]),

 .hps_hps_io_sdio_inst_CMD (HPS_SD_CMD),

 .hps_hps_io_sdio_inst_D0 (HPS_SD_DATA[0]),

 .hps_hps_io_sdio_inst_D1 (HPS_SD_DATA[1]),

 .hps_hps_io_sdio_inst_CLK (HPS_SD_CLK),

 .hps_hps_io_sdio_inst_D2 (HPS_SD_DATA[2]),

 .hps_hps_io_sdio_inst_D3 (HPS_SD_DATA[3]),

 .hps_hps_io_usb1_inst_D0 (HPS_USB_DATA[0]),

 .hps_hps_io_usb1_inst_D1 (HPS_USB_DATA[1]),

 .hps_hps_io_usb1_inst_D2 (HPS_USB_DATA[2]),

 .hps_hps_io_usb1_inst_D3 (HPS_USB_DATA[3]),

 .hps_hps_io_usb1_inst_D4 (HPS_USB_DATA[4]),

 .hps_hps_io_usb1_inst_D5 (HPS_USB_DATA[5]),

 .hps_hps_io_usb1_inst_D6 (HPS_USB_DATA[6]),

 .hps_hps_io_usb1_inst_D7 (HPS_USB_DATA[7]),

 .hps_hps_io_usb1_inst_CLK (HPS_USB_CLKOUT),

 .hps_hps_io_usb1_inst_STP (HPS_USB_STP),

 .hps_hps_io_usb1_inst_DIR (HPS_USB_DIR),

 .hps_hps_io_usb1_inst_NXT (HPS_USB_NXT),

 .hps_hps_io_spim1_inst_CLK (HPS_SPIM_CLK),

 .hps_hps_io_spim1_inst_MOSI (HPS_SPIM_MOSI),

 .hps_hps_io_spim1_inst_MISO (HPS_SPIM_MISO),

 .hps_hps_io_spim1_inst_SS0 (HPS_SPIM_SS),

71

 .hps_hps_io_uart0_inst_RX (HPS_UART_RX),

 .hps_hps_io_uart0_inst_TX (HPS_UART_TX),

 .hps_hps_io_i2c0_inst_SDA (HPS_I2C1_SDAT),

 .hps_hps_io_i2c0_inst_SCL (HPS_I2C1_SCLK),

 .hps_hps_io_i2c1_inst_SDA (HPS_I2C2_SDAT),

 .hps_hps_io_i2c1_inst_SCL (HPS_I2C2_SCLK),

 .hps_hps_io_gpio_inst_GPIO09 (HPS_CONV_USB_N),

 .hps_hps_io_gpio_inst_GPIO35 (HPS_ENET_INT_N),

 .hps_hps_io_gpio_inst_GPIO40 (HPS_LTC_GPIO),

 .hps_hps_io_gpio_inst_GPIO48 (HPS_I2C_CONTROL),

 .hps_hps_io_gpio_inst_GPIO53 (HPS_LED),

 .hps_hps_io_gpio_inst_GPIO54 (HPS_KEY),

 .hps_hps_io_gpio_inst_GPIO61 (HPS_GSENSOR_INT),

 .vga_r (VGA_R),

 .vga_g (VGA_G),

 .vga_b (VGA_B),

 .vga_clk (VGA_CLK),

 .vga_hs (VGA_HS),

 .vga_vs (VGA_VS),

 .vga_blank_n (VGA_BLANK_N)

);

 // The following quiet the "no driver" warnings for output

 // pins and should be removed if you use any of these peripherals

 assign ADC_CS_N = SW[1] ? SW[0] : 1'bZ;

 assign ADC_DIN = SW[0];

 assign ADC_SCLK = SW[0];

 assign AUD_ADCLRCK = SW[1] ? SW[0] : 1'bZ;

 assign AUD_BCLK = SW[1] ? SW[0] : 1'bZ;

 assign AUD_DACDAT = SW[0];

 assign AUD_DACLRCK = SW[1] ? SW[0] : 1'bZ;

 assign AUD_XCK = SW[0];

 assign DRAM_ADDR = { 13{ SW[0] } };

72

 assign DRAM_BA = { 2{ SW[0] } };

 assign DRAM_DQ = SW[1] ? { 16{ SW[0] } } : { 16{ 1'bZ } };

 assign {DRAM_CAS_N, DRAM_CKE, DRAM_CLK, DRAM_CS_N,

 DRAM_LDQM, DRAM_RAS_N, DRAM_UDQM, DRAM_WE_N} = { 8{SW[0]} };

 assign FAN_CTRL = SW[0];

 assign FPGA_I2C_SCLK = SW[0];

 assign FPGA_I2C_SDAT = SW[1] ? SW[0] : 1'bZ;

 assign GPIO_0 = SW[1] ? { 36{ SW[0] } } : { 36{ 1'bZ } };

 assign GPIO_1 = SW[1] ? { 36{ SW[0] } } : { 36{ 1'bZ } };

 assign HEX0 = { 7{ SW[1] } };

 assign HEX1 = { 7{ SW[2] } };

 assign HEX2 = { 7{ SW[3] } };

 assign HEX3 = { 7{ SW[4] } };

 assign HEX4 = { 7{ SW[5] } };

 assign HEX5 = { 7{ SW[6] } };

 assign IRDA_TXD = SW[0];

 assign LEDR = { 10{SW[7]} };

 assign PS2_CLK = SW[1] ? SW[0] : 1'bZ;

 assign PS2_CLK2 = SW[1] ? SW[0] : 1'bZ;

 assign PS2_DAT = SW[1] ? SW[0] : 1'bZ;

 assign PS2_DAT2 = SW[1] ? SW[0] : 1'bZ;

 assign TD_RESET_N = SW[0];

 assign VGA_SYNC_N = 1'b0; // For composite sync on green (unused)

endmodule

73

8.3. Software Code

8.3.1 assets.h
#ifndef ASSETS_H

#define ASSETS_H

#include <cstdint>

//Hardware layout constants

constexpr int TILE_COLS = 80; //Tile map width

constexpr int TILE_ROWS = 60; //Tile map height

constexpr int TM_STRIDE = 128; //Bytes per tile map row

//Playfield: 15×20 interior, with framed 1‑tile border = 17×22

constexpr int PF_WIDTH = 17;

constexpr int PF_HEIGHT = 22;

//Coordinates to center the playfield

constexpr int PF_LEFT = (TILE_COLS - PF_WIDTH) / 2;

constexpr int PF_TOP = (TILE_ROWS - PF_HEIGHT) / 4;

//Coordinates for score / lines

constexpr int HUD_COL = 10;

constexpr int HUD_SCORE_ROW = 42;

constexpr int HUD_LINES_ROW = HUD_SCORE_ROW + 9;

constexpr int LEVEL_ROW = HUD_SCORE_ROW - 9;

//Coordinates for next box

constexpr int NEXT_COL = PF_LEFT + PF_WIDTH + 3;

constexpr int NEXT_ROW = PF_TOP + 1;

//Palette Definition (Bytes are in reverse order (BGR))

static constexpr uint32_t PALETTE24[16] = {

 0x000000, //Color 0

 0xFF0000, //Color 1

 0x00FF00, //Color 2

 0x0000FF, //Color 3

 0xFFFF00, //Color 4

 0x00FFFF, //Color 5

74

 0xFF00FF, //Color 6

 0x808080, //Color 7

 0xfc036f, //Color 8

 0x606060, //Color 9

 0xA0A0A0, //Color 10

 0xC0C0C0, //Color 11

 0xE0E0E0, //Color 12

 0xF0F0F0, //Color 13

 0xFFFFFF, //Color 14

 0xFFFFFF //Color 15

};

//Tile indexes

enum : uint8_t {

 TILE_EMPTY = 0,

 TILE_WALL = 1,

 TILE_RED = 2,

 TILE_GREEN = 3,

 TILE_BLUE = 4,

 TILE_YELLOW = 5,

 TILE_CYAN = 6,

 TILE_MAG = 7,

 TILE_PURPLE = 8,

 TILE_WHITE = 14

};

//Palette indexes

static constexpr uint8_t TILE2PAL(uint8_t tile) {

 switch(tile){

 case TILE_WALL: return 7;

 case TILE_RED: return 1;

 case TILE_GREEN: return 2;

 case TILE_BLUE: return 3;

 case TILE_YELLOW: return 4;

 case TILE_CYAN: return 5;

 case TILE_MAG: return 6;

 case TILE_PURPLE: return 8;

 case TILE_WHITE: return 14;

 default: return 0;

 }

}

75

//Tile set

static uint8_t TILESET[16384];

inline void build_tileset() {

 for (int tile = 0; tile < 256; ++tile) {

 uint8_t col = TILE2PAL(tile);

 for (int pixel = 0; pixel < 64; ++pixel)

 TILESET[tile * 64 + pixel] = col;

 }

}

#endif

8.3.2 audio.cpp
#include <iostream>

#include <mpg123.h>

#include <ao/ao.h>

int main() {

 const char *filename = "Tetris.mp3"; //MP3 Filename

 //Initialize mpg123

 if (mpg123_init() != MPG123_OK) {

 std::cerr << "Unable to initialize mpg123\n";

 return 1;

 }

 int music_handler_error;

 mpg123_handle *music_handler = mpg123_new(NULL, &music_handler_error);

 if (!music_handler) {

 std::cerr << "Failed to create mpg123_handle: " <<

mpg123_plain_strerror(music_handler_error) << "\n";

 mpg123_exit();

 return 1;

 }

 //Open the MP3 file

 if (mpg123_open(music_handler, filename) != MPG123_OK) {

 std::cerr << "Error opening `" << filename << "`\n";

 mpg123_delete(music_handler);

 mpg123_exit();

 return 1;

76

 }

 //Get audio format

 long rate;

 int channels, encoding;

 if (mpg123_getformat(music_handler, &rate, &channels, &encoding) != MPG123_OK) {

 std::cerr << "Failed to get MP3 format information\n";

 mpg123_close(music_handler);

 mpg123_delete(music_handler);

 mpg123_exit();

 return 1;

 }

 //Initialize libao with format from mp3 file

 ao_initialize();

 ao_sample_format format;

 format.bits = mpg123_encsize(encoding) * 8;

 format.rate = rate;

 format.channels = channels;

 format.byte_format = AO_FMT_NATIVE;

 format.matrix = nullptr;

 //Open the ALSA drivers

 int driver = ao_driver_id("alsa");

 if (driver < 0) {

 std::cerr << "ALSA driver not available\n";

 ao_shutdown();

 mpg123_close(music_handler);

 mpg123_delete(music_handler);

 mpg123_exit();

 return 1;

 }

 //Explicitly open card 1, device 0 (Our audio device)

 ao_option ao_opts[] = {

 {"dev", "plughw:1,0"}

 };

 ao_device *usb_audio_device = ao_open_live(driver, &format, ao_opts);

 if (!usb_audio_device) {

 std::cerr << "ao_open_live failed\n";

 ao_shutdown();

77

 mpg123_close(music_handler);

 mpg123_delete(music_handler);

 mpg123_exit();

 return 1;

 }

 //Decode and play audio

 unsigned char buffer[8192];

 size_t done = 0;

 //Loop playback forever

 while (true) {

 //Rewind to start

 mpg123_seek(music_handler, 0, SEEK_SET);

 //Play track

 while (mpg123_read(music_handler, buffer, 8192, &done) == MPG123_OK && done >

0) {

 ao_play(usb_audio_device, reinterpret_cast<char*>(buffer), done);

 }

 }

 return 0;

}

8.3.3 font.h
#ifndef _FONT5X7_H_

#define _FONT5X7_H_

//from

https://github.com/Ameba8195/Arduino/blob/master/hardware_v2/cores/arduino/font5x7.h

/*

* Take 'A' as example.

* 'A' use 5 byte to denote:

* 0x7C, 0x12, 0x11, 0x12, 0x7C

*

* and we represent it in base 2:

* 0x7C: 01111100

* 0x12: 00010010

78

* 0x11: 00010001

* 0x12: 00010010

* 0x7C: 01111100

* where 1 is font color, and 0 is background color

*

* So it's 'A' if we look it in counter-clockwise for 90 degree.

* In general case, we also add a background line to seperate from other character:

* 0x7C: 01111100

* 0x12: 00010010

* 0x11: 00010001

* 0x12: 00010010

* 0x7C: 01111100

* 0x00: 00000000

*

**/

// standard ascii 5x7 font

static unsigned char font5x7[] = {

 0x00, 0x00, 0x00, 0x00, 0x00, // 0x00 (nul)

 0x3E, 0x5B, 0x4F, 0x5B, 0x3E, // 0x01 (soh)

 0x3E, 0x6B, 0x4F, 0x6B, 0x3E, // 0x02 (stx)

 0x1C, 0x3E, 0x7C, 0x3E, 0x1C, // 0x03 (etx)

 0x18, 0x3C, 0x7E, 0x3C, 0x18, // 0x04 (eot)

 0x1C, 0x57, 0x7D, 0x57, 0x1C, // 0x05 (enq)

 0x1C, 0x5E, 0x7F, 0x5E, 0x1C, // 0x06 (ack)

 0x00, 0x18, 0x3C, 0x18, 0x00, // 0x07 (bel)

 0xFF, 0xE7, 0xC3, 0xE7, 0xFF, // 0x08 (bs)

 0x00, 0x18, 0x24, 0x18, 0x00, // 0x09 (tab)

 0xFF, 0xE7, 0xDB, 0xE7, 0xFF, // 0x0A (lf)

 0x30, 0x48, 0x3A, 0x06, 0x0E, // 0x0B (vt)

 0x26, 0x29, 0x79, 0x29, 0x26, // 0x0C (np)

 0x40, 0x7F, 0x05, 0x05, 0x07, // 0x0D (cr)

 0x40, 0x7F, 0x05, 0x25, 0x3F, // 0x0E (so)

 0x5A, 0x3C, 0xE7, 0x3C, 0x5A, // 0x0F (si)

 0x7F, 0x3E, 0x1C, 0x1C, 0x08, // 0x10 (dle)

 0x08, 0x1C, 0x1C, 0x3E, 0x7F, // 0x11 (dc1)

 0x14, 0x22, 0x7F, 0x22, 0x14, // 0x12 (dc2)

 0x5F, 0x5F, 0x00, 0x5F, 0x5F, // 0x13 (dc3)

 0x06, 0x09, 0x7F, 0x01, 0x7F, // 0x14 (dc4)

 0x00, 0x66, 0x89, 0x95, 0x6A, // 0x15 (nak)

 0x60, 0x60, 0x60, 0x60, 0x60, // 0x16 (syn)

 0x94, 0xA2, 0xFF, 0xA2, 0x94, // 0x17 (etb)

79

 0x08, 0x04, 0x7E, 0x04, 0x08, // 0x18 (can)

 0x10, 0x20, 0x7E, 0x20, 0x10, // 0x19 (em)

 0x08, 0x08, 0x2A, 0x1C, 0x08, // 0x1A (eof)

 0x08, 0x1C, 0x2A, 0x08, 0x08, // 0x1B (esc)

 0x1E, 0x10, 0x10, 0x10, 0x10, // 0x1C (fs)

 0x0C, 0x1E, 0x0C, 0x1E, 0x0C, // 0x1D (gs)

 0x30, 0x38, 0x3E, 0x38, 0x30, // 0x1E (rs)

 0x06, 0x0E, 0x3E, 0x0E, 0x06, // 0x1F (us)

 0x00, 0x00, 0x00, 0x00, 0x00, // 0x20

 0x00, 0x00, 0x5F, 0x00, 0x00, // 0x21 !

 0x00, 0x07, 0x00, 0x07, 0x00, // 0x22 "

 0x14, 0x7F, 0x14, 0x7F, 0x14, // 0x23 #

 0x24, 0x2A, 0x7F, 0x2A, 0x12, // 0x24 $

 0x23, 0x13, 0x08, 0x64, 0x62, // 0x25 %

 0x36, 0x49, 0x56, 0x20, 0x50, // 0x26 &

 0x00, 0x08, 0x07, 0x03, 0x00, // 0x27 '

 0x00, 0x1C, 0x22, 0x41, 0x00, // 0x28 (

 0x00, 0x41, 0x22, 0x1C, 0x00, // 0x29)

 0x2A, 0x1C, 0x7F, 0x1C, 0x2A, // 0x2A *

 0x08, 0x08, 0x3E, 0x08, 0x08, // 0x2B +

 0x00, 0x80, 0x70, 0x30, 0x00, // 0x2C ,

 0x08, 0x08, 0x08, 0x08, 0x08, // 0x2D -

 0x00, 0x00, 0x60, 0x60, 0x00, // 0x2E .

 0x20, 0x10, 0x08, 0x04, 0x02, // 0x2F /

 0x3E, 0x51, 0x49, 0x45, 0x3E, // 0x30 0

 0x00, 0x42, 0x7F, 0x40, 0x00, // 0x31 1

 0x72, 0x49, 0x49, 0x49, 0x46, // 0x32 2

 0x21, 0x41, 0x49, 0x4D, 0x33, // 0x33 3

 0x18, 0x14, 0x12, 0x7F, 0x10, // 0x34 4

 0x27, 0x45, 0x45, 0x45, 0x39, // 0x35 5

 0x3C, 0x4A, 0x49, 0x49, 0x31, // 0x36 6

 0x41, 0x21, 0x11, 0x09, 0x07, // 0x37 7

 0x36, 0x49, 0x49, 0x49, 0x36, // 0x38 8

 0x46, 0x49, 0x49, 0x29, 0x1E, // 0x39 9

 0x00, 0x00, 0x14, 0x00, 0x00, // 0x3A :

 0x00, 0x40, 0x34, 0x00, 0x00, // 0x3B ;

 0x00, 0x08, 0x14, 0x22, 0x41, // 0x3C <

 0x14, 0x14, 0x14, 0x14, 0x14, // 0x3D =

 0x00, 0x41, 0x22, 0x14, 0x08, // 0x3E >

 0x02, 0x01, 0x59, 0x09, 0x06, // 0x3F ?

 0x3E, 0x41, 0x5D, 0x59, 0x4E, // 0x40 @

 0x7C, 0x12, 0x11, 0x12, 0x7C, // 0x41 A

80

 0x7F, 0x49, 0x49, 0x49, 0x36, // 0x42 B

 0x3E, 0x41, 0x41, 0x41, 0x22, // 0x43 C

 0x7F, 0x41, 0x41, 0x41, 0x3E, // 0x44 D

 0x7F, 0x49, 0x49, 0x49, 0x41, // 0x45 E

 0x7F, 0x09, 0x09, 0x09, 0x01, // 0x46 F

 0x3E, 0x41, 0x41, 0x51, 0x73, // 0x47 G

 0x7F, 0x08, 0x08, 0x08, 0x7F, // 0x48 H

 0x00, 0x41, 0x7F, 0x41, 0x00, // 0x49 I

 0x20, 0x40, 0x41, 0x3F, 0x01, // 0x4A J

 0x7F, 0x08, 0x14, 0x22, 0x41, // 0x4B K

 0x7F, 0x40, 0x40, 0x40, 0x40, // 0x4C L

 0x7F, 0x02, 0x1C, 0x02, 0x7F, // 0x4D M

 0x7F, 0x04, 0x08, 0x10, 0x7F, // 0x4E N

 0x3E, 0x41, 0x41, 0x41, 0x3E, // 0x4F O

 0x7F, 0x09, 0x09, 0x09, 0x06, // 0x50 P

 0x3E, 0x41, 0x51, 0x21, 0x5E, // 0x51 Q

 0x7F, 0x09, 0x19, 0x29, 0x46, // 0x52 R

 0x26, 0x49, 0x49, 0x49, 0x32, // 0x53 S

 0x03, 0x01, 0x7F, 0x01, 0x03, // 0x54 T

 0x3F, 0x40, 0x40, 0x40, 0x3F, // 0x55 U

 0x1F, 0x20, 0x40, 0x20, 0x1F, // 0x56 V

 0x3F, 0x40, 0x38, 0x40, 0x3F, // 0x57 W

 0x63, 0x14, 0x08, 0x14, 0x63, // 0x58 X

 0x03, 0x04, 0x78, 0x04, 0x03, // 0x59 Y

 0x61, 0x59, 0x49, 0x4D, 0x43, // 0x5A Z

 0x00, 0x7F, 0x41, 0x41, 0x41, // 0x5B [

 0x02, 0x04, 0x08, 0x10, 0x20, // 0x5C backslash

 0x00, 0x41, 0x41, 0x41, 0x7F, // 0x5D]

 0x04, 0x02, 0x01, 0x02, 0x04, // 0x5E ^

 0x40, 0x40, 0x40, 0x40, 0x40, // 0x5F _

 0x00, 0x03, 0x07, 0x08, 0x00, // 0x60 `

 0x20, 0x54, 0x54, 0x78, 0x40, // 0x61 a

 0x7F, 0x28, 0x44, 0x44, 0x38, // 0x62 b

 0x38, 0x44, 0x44, 0x44, 0x28, // 0x63 c

 0x38, 0x44, 0x44, 0x28, 0x7F, // 0x64 d

 0x38, 0x54, 0x54, 0x54, 0x18, // 0x65 e

 0x00, 0x08, 0x7E, 0x09, 0x02, // 0x66 f

 0x18, 0xA4, 0xA4, 0x9C, 0x78, // 0x67 g

 0x7F, 0x08, 0x04, 0x04, 0x78, // 0x68 h

 0x00, 0x44, 0x7D, 0x40, 0x00, // 0x69 i

 0x20, 0x40, 0x40, 0x3D, 0x00, // 0x6A j

 0x7F, 0x10, 0x28, 0x44, 0x00, // 0x6B k

81

 0x00, 0x41, 0x7F, 0x40, 0x00, // 0x6C l

 0x7C, 0x04, 0x78, 0x04, 0x78, // 0x6D m

 0x7C, 0x08, 0x04, 0x04, 0x78, // 0x6E n

 0x38, 0x44, 0x44, 0x44, 0x38, // 0x6F o

 0xFC, 0x18, 0x24, 0x24, 0x18, // 0x70 p

 0x18, 0x24, 0x24, 0x18, 0xFC, // 0x71 q

 0x7C, 0x08, 0x04, 0x04, 0x08, // 0x72 r

 0x48, 0x54, 0x54, 0x54, 0x24, // 0x73 s

 0x04, 0x04, 0x3F, 0x44, 0x24, // 0x74 t

 0x3C, 0x40, 0x40, 0x20, 0x7C, // 0x75 u

 0x1C, 0x20, 0x40, 0x20, 0x1C, // 0x76 v

 0x3C, 0x40, 0x30, 0x40, 0x3C, // 0x77 w

 0x44, 0x28, 0x10, 0x28, 0x44, // 0x78 x

 0x4C, 0x90, 0x90, 0x90, 0x7C, // 0x79 y

 0x44, 0x64, 0x54, 0x4C, 0x44, // 0x7A z

 0x00, 0x08, 0x36, 0x41, 0x00, // 0x7B {

 0x00, 0x00, 0x77, 0x00, 0x00, // 0x7C |

 0x00, 0x41, 0x36, 0x08, 0x00, // 0x7D }

 0x02, 0x01, 0x02, 0x04, 0x02, // 0x7E ~

 0x3C, 0x26, 0x23, 0x26, 0x3C, // 0x7F

 0x1E, 0xA1, 0xA1, 0x61, 0x12, // 0x80

 0x3A, 0x40, 0x40, 0x20, 0x7A, // 0x81

 0x38, 0x54, 0x54, 0x55, 0x59, // 0x82

 0x21, 0x55, 0x55, 0x79, 0x41, // 0x83

 0x22, 0x54, 0x54, 0x78, 0x42, // 0x84

 0x21, 0x55, 0x54, 0x78, 0x40, // 0x85

 0x20, 0x54, 0x55, 0x79, 0x40, // 0x86

 0x0C, 0x1E, 0x52, 0x72, 0x12, // 0x87

 0x39, 0x55, 0x55, 0x55, 0x59, // 0x88

 0x39, 0x54, 0x54, 0x54, 0x59, // 0x89

 0x39, 0x55, 0x54, 0x54, 0x58, // 0x8A

 0x00, 0x00, 0x45, 0x7C, 0x41, // 0x8B

 0x00, 0x02, 0x45, 0x7D, 0x42, // 0x8C

 0x00, 0x01, 0x45, 0x7C, 0x40, // 0x8D

 0x7D, 0x12, 0x11, 0x12, 0x7D, // 0x8E

 0xF0, 0x28, 0x25, 0x28, 0xF0, // 0x8F

 0x7C, 0x54, 0x55, 0x45, 0x00, // 0x90

 0x20, 0x54, 0x54, 0x7C, 0x54, // 0x91

 0x7C, 0x0A, 0x09, 0x7F, 0x49, // 0x92

 0x32, 0x49, 0x49, 0x49, 0x32, // 0x93

 0x3A, 0x44, 0x44, 0x44, 0x3A, // 0x94

 0x32, 0x4A, 0x48, 0x48, 0x30, // 0x95

82

 0x3A, 0x41, 0x41, 0x21, 0x7A, // 0x96

 0x3A, 0x42, 0x40, 0x20, 0x78, // 0x97

 0x00, 0x9D, 0xA0, 0xA0, 0x7D, // 0x98

 0x3D, 0x42, 0x42, 0x42, 0x3D, // 0x99

 0x3D, 0x40, 0x40, 0x40, 0x3D, // 0x9A

 0x3C, 0x24, 0xFF, 0x24, 0x24, // 0x9B

 0x48, 0x7E, 0x49, 0x43, 0x66, // 0x9C

 0x2B, 0x2F, 0xFC, 0x2F, 0x2B, // 0x9D

 0xFF, 0x09, 0x29, 0xF6, 0x20, // 0x9E

 0xC0, 0x88, 0x7E, 0x09, 0x03, // 0x9F

 0x20, 0x54, 0x54, 0x79, 0x41, // 0xA0

 0x00, 0x00, 0x44, 0x7D, 0x41, // 0xA1

 0x30, 0x48, 0x48, 0x4A, 0x32, // 0xA2

 0x38, 0x40, 0x40, 0x22, 0x7A, // 0xA3

 0x00, 0x7A, 0x0A, 0x0A, 0x72, // 0xA4

 0x7D, 0x0D, 0x19, 0x31, 0x7D, // 0xA5

 0x26, 0x29, 0x29, 0x2F, 0x28, // 0xA6

 0x26, 0x29, 0x29, 0x29, 0x26, // 0xA7

 0x30, 0x48, 0x4D, 0x40, 0x20, // 0xA8

 0x38, 0x08, 0x08, 0x08, 0x08, // 0xA9

 0x08, 0x08, 0x08, 0x08, 0x38, // 0xAA

 0x2F, 0x10, 0xC8, 0xAC, 0xBA, // 0xAB

 0x2F, 0x10, 0x28, 0x34, 0xFA, // 0xAC

 0x00, 0x00, 0x7B, 0x00, 0x00, // 0xAD

 0x08, 0x14, 0x2A, 0x14, 0x22, // 0xAE

 0x22, 0x14, 0x2A, 0x14, 0x08, // 0xAF

 0x55, 0x00, 0x55, 0x00, 0x55, // 0xB0

 0xAA, 0x55, 0xAA, 0x55, 0xAA, // 0xB1

 0xFF, 0x55, 0xFF, 0x55, 0xFF, // 0xB2

 0x00, 0x00, 0x00, 0xFF, 0x00, // 0xB3

 0x10, 0x10, 0x10, 0xFF, 0x00, // 0xB4

 0x14, 0x14, 0x14, 0xFF, 0x00, // 0xB5

 0x10, 0x10, 0xFF, 0x00, 0xFF, // 0xB6

 0x10, 0x10, 0xF0, 0x10, 0xF0, // 0xB7

 0x14, 0x14, 0x14, 0xFC, 0x00, // 0xB8

 0x14, 0x14, 0xF7, 0x00, 0xFF, // 0xB9

 0x00, 0x00, 0xFF, 0x00, 0xFF, // 0xBA

 0x14, 0x14, 0xF4, 0x04, 0xFC, // 0xBB

 0x14, 0x14, 0x17, 0x10, 0x1F, // 0xBC

 0x10, 0x10, 0x1F, 0x10, 0x1F, // 0xBD

 0x14, 0x14, 0x14, 0x1F, 0x00, // 0xBE

 0x10, 0x10, 0x10, 0xF0, 0x00, // 0xBF

83

 0x00, 0x00, 0x00, 0x1F, 0x10, // 0xC0

 0x10, 0x10, 0x10, 0x1F, 0x10, // 0xC1

 0x10, 0x10, 0x10, 0xF0, 0x10, // 0xC2

 0x00, 0x00, 0x00, 0xFF, 0x10, // 0xC3

 0x10, 0x10, 0x10, 0x10, 0x10, // 0xC4

 0x10, 0x10, 0x10, 0xFF, 0x10, // 0xC5

 0x00, 0x00, 0x00, 0xFF, 0x14, // 0xC6

 0x00, 0x00, 0xFF, 0x00, 0xFF, // 0xC7

 0x00, 0x00, 0x1F, 0x10, 0x17, // 0xC8

 0x00, 0x00, 0xFC, 0x04, 0xF4, // 0xC9

 0x14, 0x14, 0x17, 0x10, 0x17, // 0xCA

 0x14, 0x14, 0xF4, 0x04, 0xF4, // 0xCB

 0x00, 0x00, 0xFF, 0x00, 0xF7, // 0xCC

 0x14, 0x14, 0x14, 0x14, 0x14, // 0xCD

 0x14, 0x14, 0xF7, 0x00, 0xF7, // 0xCE

 0x14, 0x14, 0x14, 0x17, 0x14, // 0xCF

 0x10, 0x10, 0x1F, 0x10, 0x1F, // 0xD0

 0x14, 0x14, 0x14, 0xF4, 0x14, // 0xD1

 0x10, 0x10, 0xF0, 0x10, 0xF0, // 0xD2

 0x00, 0x00, 0x1F, 0x10, 0x1F, // 0xD3

 0x00, 0x00, 0x00, 0x1F, 0x14, // 0xD4

 0x00, 0x00, 0x00, 0xFC, 0x14, // 0xD5

 0x00, 0x00, 0xF0, 0x10, 0xF0, // 0xD6

 0x10, 0x10, 0xFF, 0x10, 0xFF, // 0xD7

 0x14, 0x14, 0x14, 0xFF, 0x14, // 0xD8

 0x10, 0x10, 0x10, 0x1F, 0x00, // 0xD9

 0x00, 0x00, 0x00, 0xF0, 0x10, // 0xDA

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 0xDB

 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, // 0xDC

 0xFF, 0xFF, 0xFF, 0x00, 0x00, // 0xDD

 0x00, 0x00, 0x00, 0xFF, 0xFF, // 0xDE

 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, // 0xDF

 0x38, 0x44, 0x44, 0x38, 0x44, // 0xE0

 0xFC, 0x4A, 0x4A, 0x4A, 0x34, // 0xE1

 0x7E, 0x02, 0x02, 0x06, 0x06, // 0xE2

 0x02, 0x7E, 0x02, 0x7E, 0x02, // 0xE3

 0x63, 0x55, 0x49, 0x41, 0x63, // 0xE4

 0x38, 0x44, 0x44, 0x3C, 0x04, // 0xE5

 0x40, 0x7E, 0x20, 0x1E, 0x20, // 0xE6

 0x06, 0x02, 0x7E, 0x02, 0x02, // 0xE7

 0x99, 0xA5, 0xE7, 0xA5, 0x99, // 0xE8

 0x1C, 0x2A, 0x49, 0x2A, 0x1C, // 0xE9

84

 0x4C, 0x72, 0x01, 0x72, 0x4C, // 0xEA

 0x30, 0x4A, 0x4D, 0x4D, 0x30, // 0xEB

 0x30, 0x48, 0x78, 0x48, 0x30, // 0xEC

 0xBC, 0x62, 0x5A, 0x46, 0x3D, // 0xED

 0x3E, 0x49, 0x49, 0x49, 0x00, // 0xEE

 0x7E, 0x01, 0x01, 0x01, 0x7E, // 0xEF

 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, // 0xF0

 0x44, 0x44, 0x5F, 0x44, 0x44, // 0xF1

 0x40, 0x51, 0x4A, 0x44, 0x40, // 0xF2

 0x40, 0x44, 0x4A, 0x51, 0x40, // 0xF3

 0x00, 0x00, 0xFF, 0x01, 0x03, // 0xF4

 0xE0, 0x80, 0xFF, 0x00, 0x00, // 0xF5

 0x08, 0x08, 0x6B, 0x6B, 0x08, // 0xF6

 0x36, 0x12, 0x36, 0x24, 0x36, // 0xF7

 0x06, 0x0F, 0x09, 0x0F, 0x06, // 0xF8

 0x00, 0x00, 0x18, 0x18, 0x00, // 0xF9

 0x00, 0x00, 0x10, 0x10, 0x00, // 0xFA

 0x30, 0x40, 0xFF, 0x01, 0x01, // 0xFB

 0x00, 0x1F, 0x01, 0x01, 0x1E, // 0xFC

 0x00, 0x19, 0x1D, 0x17, 0x12, // 0xFD

 0x00, 0x3C, 0x3C, 0x3C, 0x3C, // 0xFE

 0x00, 0x00, 0x00, 0x00, 0x00 // 0xFF

};

#endif

8.3.4 main.cpp
#include "assets.h"

#include "font.h"

#include "tetris.hpp"

#include <fcntl.h>

#include <linux/input.h>

#include <sys/mman.h>

#include <unistd.h>

#include <cstdio>

#include <cstring>

#include <fstream>

#include <iomanip>

/*

######################################

Memory Mapping Functions and Constants

85

######################################

*/

//Memory Map

constexpr off_t PHY_TM = 0xff200000; //Tile Map

constexpr off_t PHY_PA = 0xff202000; //Color Palette

constexpr off_t PHY_TS = 0xff204000; //Tile Set

static volatile uint8_t *TM,*PA,*TS;

//Map FPGA memory

static void map_fpga() {

 int fd = open("/dev/mem", O_RDWR | O_SYNC);

 if (fd < 0) {

 perror("mem"); _exit(1);

 }

 #define MAP(base,sz,ptr) \

 ptr = (uint8_t*) mmap(nullptr, sz, PROT_READ | PROT_WRITE, MAP_SHARED, fd,

base); \

 if (ptr == MAP_FAILED){perror("mmap"); _exit(1);}

 MAP(PHY_TM, 8192, TM)

 MAP(PHY_PA, 64, PA)

 MAP(PHY_TS, 16384, TS)

 close(fd);

}

//Load palette and tile graphics

static void load_assets() {

 for (int i = 0; i < 16; ++i) {

 uint32_t color = PALETTE24[i];

 PA[i*4+0] = color & 0xFF;

 PA[i*4+1] = (color >> 8) & 0xFF;

 PA[i*4+2] = (color >> 16) & 0xFF;

 PA[i*4+3] = 0;

 }

 {

 std::ifstream tf("tiles.hex");

 if (tf) {

 tf >> std::hex; //Parse tileset data from hex format

 for (size_t i = 0; i < sizeof(TILESET); ++i) {

 unsigned int v;

 if (!(tf >> v)) {

 //Tileset is malformed or too short, fall back to building tileset

86

 build_tileset();

 break;

 }

 TILESET[i] = static_cast<uint8_t>(v);

 }

 } else {

 //Couldn’t open tileset file, fall back to building tileset

 build_tileset();

 }

 }

 memcpy((void*) TS, TILESET, 16384);

 memset((void*) TM, 0, 8192);

}

/*

######################################

Helper Functions to Draw Objects

######################################

*/

//Put tile in tile map

static inline void put(int col, int row, uint8_t tile) {

 TM[row * TM_STRIDE + col] = tile;

}

//Draw a rectangle using tiles

static void rect(int x0, int y0, int w, int h, uint8_t tile) {

 for (int y = y0; y < y0 + h; ++y)

 for (int x = x0; x < x0 + w; ++x) put(x, y, tile);

}

//Draw a frame using tiles

static void frame(int x0, int y0, int w, int h, uint8_t tile){

 for (int x = x0; x < x0 + w; ++x) put(x, y0, tile), put(x, y0 + h - 1, tile);

 for (int y = y0; y < y0 + h; ++y) put(x0, y, tile), put(x0 + w - 1, y, tile);

}

//Render char using font

static void draw_char(int col, int row, char ch) {

 // each ASCII code is 5 bytes wide in font5x7[]

 const unsigned char* bmp = font5x7 + (static_cast<unsigned char>(ch) * 5);

 for (int x = 0; x < 5; ++x) {

87

 unsigned char column = bmp[x];

 for (int y = 0; y < 7; ++y) {

 if (column & (1 << y)) {

 put(col + x, row + y, TILE_WHITE);

 }

 }

 }

}

//Render string using draw_char

static void draw_string(int col, int row, const char*str) {

 for (int i = 0; str[i]; ++i) draw_char(col + i * 6, row, str[i]);

}

//Clear area

static void clear_area(int col, int row, int w, int h) {

 rect(col, row, w, h, TILE_EMPTY);

}

/*

######################################

Function to Render Tetris

######################################

*/

//Draw playfield borders

static void draw_borders() {

 frame(PF_LEFT, PF_TOP, PF_WIDTH, PF_HEIGHT, TILE_WALL);

 frame(NEXT_COL - 1, NEXT_ROW - 1, 6, 6, TILE_WALL);

}

//Draw playfield

static void draw_playfield(const Tetris& t) {

 for (int y = 0; y < ROWS; ++y)

 for (int x = 0; x < COLS; ++x)

 put(PF_LEFT + 1 + x, PF_TOP + 1 + y, t.playfield(x,y));

}

//Draw ghost block

static void draw_ghost(const Tetris& t) {

 int x = t.get_px();

 int y = t.get_py();

88

 //Drop down until you would collide

 while (t.can_place(x, y + 1)) {

 y++;

 }

 //Grab the 4×4 mask already rotated into place

 Tetromino orient = t.get_rotated_piece();

 //Render with TILE_WHITE tiles

 for (int dy = 0; dy < 4; ++dy) {

 for (int dx = 0; dx < 4; ++dx) {

 if (orient.mask[dy][dx]) {

 put(PF_LEFT + 1 + x + dx, PF_TOP + 1 + y + dy, TILE_WHITE);

 }

 }

 }

}

//Draw Tetromino piece

static void draw_piece(const Tetris& t) {

 t.for_each_block([](int x, int y, uint8_t tile){

 put(PF_LEFT + 1 + x, PF_TOP + 1 + y, tile);

 });

}

//Draw next Tetromino piece

static void draw_next(const Tetris& t) {

 rect(NEXT_COL,NEXT_ROW,4,4,TILE_EMPTY); //Clear next piece square

 t.for_each_next([](int x, int y, uint8_t tile){

 put(NEXT_COL + x, NEXT_ROW + y, tile);

 });

}

//Draw HUD

static void draw_hud(const Tetris& t)

{

 static int prev_score = -1;

 static int prev_lines = -1;

 static int prev_level = -1;

89

 static int prev_score_len = 0;

 static int prev_lines_len = 0;

 static int prev_level_len = 0;

 //Helper function to erase the previous number

 auto erase_number = [](int col, int row, int len)

 {

 if (len == 0) return;

 //Each char is 5 pixels wide so we advance 6 pixels

 const int CHAR_W = 6;

 const int CHAR_H = 7;

 clear_area(col, row, len * CHAR_W, CHAR_H);

 };

 //Draw the HUD labels once per game

 static bool labels_drawn = false;

 static bool was_game_over = true; //Force labels on the first game

 //Detect start of a new game after game over

 if (!t.game_over() && was_game_over) {

 labels_drawn = false; //Re-enable label drawing

 //Reset HUD number caches so first frame redraws them

 prev_score = -1;

 prev_lines = -1;

 prev_level = -1;

 prev_score_len = 0;

 prev_lines_len = 0;

 prev_level_len = 0;

 }

 //Remember game over status for next frame

 was_game_over = t.game_over();

 //Draw the score, lines, and level labels once per game

 if (!labels_drawn) {

 draw_string(HUD_COL, HUD_SCORE_ROW, "SCORE");

 draw_string(HUD_COL, HUD_LINES_ROW, "LINES");

 draw_string(HUD_COL, LEVEL_ROW, "LEVEL");

 labels_drawn = true;

90

 }

 char buf[8];

 //Score

 if (t.score() != prev_score) {

 erase_number(HUD_COL + 40, HUD_SCORE_ROW, prev_score_len);

 prev_score = t.score();

 sprintf(buf, "%d", prev_score);

 prev_score_len = strlen(buf);

 draw_string(HUD_COL + 40, HUD_SCORE_ROW, buf);

 }

 //Lines

 if (t.lines() != prev_lines) {

 erase_number(HUD_COL + 40, HUD_LINES_ROW, prev_lines_len);

 prev_lines = t.lines();

 sprintf(buf, "%d", prev_lines);

 prev_lines_len = strlen(buf);

 draw_string(HUD_COL + 40, HUD_LINES_ROW, buf);

 }

 //Level

 if (t.get_level() != prev_level) {

 erase_number(HUD_COL + 40, LEVEL_ROW, prev_level_len);

 prev_level = t.get_level();

 sprintf(buf, "%d", prev_level);

 prev_level_len = strlen(buf);

 draw_string(HUD_COL + 40, LEVEL_ROW, buf);

 }

}

/*

######################################

Game Logic State Machine

######################################

91

*/

//Game logic state machine

enum State {START, PLAY, OVER};

static State state = START;

//Open USB Controller

static int open_controller() {

 struct input_id id;

 char path[64], name[256];

 for (int i = 0; i < 32; ++i) {

 snprintf(path, sizeof(path), "/dev/input/event%d", i);

 int fd = open(path, O_RDONLY | O_NONBLOCK);

 if (fd < 0) continue;

 //Get device name

 if (ioctl(fd, EVIOCGNAME(sizeof(name)), name) < 0)

 name[0] = '\0';

 //Get vendor/product ID

 if (ioctl(fd, EVIOCGID, &id) < 0)

 memset(&id, 0, sizeof(id));

 //Match on controller being used

 if (strcmp(name, "USB Gamepad") == 0 ||

 (id.vendor == 0x0079 && id.product == 0x0011))

 {

 printf("Using controller: %s (%s)\n", name, path);

 return fd;

 }

 close(fd);

 }

 return -1;

}

//Read Controller input

static void poll_input(Tetris& t, int fd) {

 struct input_event ev;

 //Read all pending events

 while (read(fd, &ev, sizeof(ev)) == sizeof(ev)) {

 switch (state) {

 case START:

92

 //Start button → PLAY

 if (ev.type == EV_KEY && ev.value == 1 && ev.code == 297) {

 state = PLAY;

 clear_area(0, 0, 80, 60);

 }

 break;

 case PLAY:

 //D‑pad (ABS_HAT0X = code 0, ABS_HAT0Y = code 1)

 if (ev.type == EV_ABS) {

 if (ev.code == 0) { //left/right

 if (ev.value == 0) t.move_left();

 else if (ev.value == 255) t.move_right();

 }

 else if (ev.code == 1) { //down

 if (ev.value == 255) t.soft_drop();

 }

 }

 //Buttons (EV_KEY + value == 1)

 else if (ev.type == EV_KEY && ev.value == 1) {

 switch (ev.code) {

 case 288: //X

 case 292: //L

 case 293: //R

 t.rotate();

 break;

 case 289: //A

 case 291: //Y

 t.soft_drop();

 break;

 case 290: //B

 t.hard_drop();

 break;

 case 296: //Select

 t.toggle_pause();

 break;

 }

 }

 break;

 case OVER:

 //Start button resets the game

93

 if (ev.type == EV_KEY && ev.value == 1 && ev.code == 297) {

 t.reset();

 clear_area(0, 0, 80, 60);

 state = PLAY;

 }

 break;

 }

 }

}

//Show start screen

static void show_start() {

 memset((void*)TM, 0, 8192);

 draw_string(10, 20, "TETRIS FPGA");

 draw_string(10, 40, "PRESS START");

 draw_string(10, 50, "TO START");

}

//Show game over screen

static void show_game_over(Tetris& t) {

 char buf[8];

 clear_area(0, 0, 80, 60);

 draw_string(10, 10, "GAME OVER");

 draw_string(10, 40, "START:");

 draw_string(20, 50, "RESTART");

 sprintf(buf, "%d", t.score());

 draw_string(10, 20, "SCORE");

 draw_string(50, 20, buf);

 sprintf(buf, "%d", t.lines());

 draw_string(10, 30, "LINES");

 draw_string(50, 30, buf);

}

//Main program loop

int main() {

 map_fpga();

 load_assets();

 int controller = open_controller(); if (controller < 0) {perror("controller");

return 1;}

 Tetris tetris;

 show_start();

94

 while(true) {

 poll_input(tetris, controller);

 if (state == PLAY) {

 tetris.step();

 draw_borders();

 draw_playfield(tetris);

 draw_ghost(tetris);

 draw_piece(tetris);

 draw_next(tetris);

 draw_hud(tetris);

 if (tetris.game_over()) {

 state = OVER;

 show_game_over(tetris);

 }

 }

 usleep(16666); //Frame timer for 60Hz

 }

}

8.3.5 Makefile
Makefile

CXX := g++

CXXFLAGS := -std=c++17 -Wall -Wextra -I.

LDLIBS := -lmpg123 -lao

Executables

TETRIS_EXE := tetris

MUSIC_EXE := audio

RUN_EXE := runner

Sources

TETRIS_SRC := main.cpp tetris.cpp

MUSIC_SRC := audio.cpp

RUN_SRC := runner.cpp

.PHONY: all run clean

all: $(TETRIS_EXE) $(MUSIC_EXE) $(RUN_EXE)

95

$(TETRIS_EXE): $(TETRIS_SRC)

 $(CXX) $(CXXFLAGS) -o $@ $^ $(LDLIBS)

$(MUSIC_EXE): $(MUSIC_SRC)

 $(CXX) $(CXXFLAGS) -o $@ $^ $(LDLIBS)

$(RUN_EXE): $(RUN_SRC)

 $(CXX) $(CXXFLAGS) -o $@ $^ -pthread

run: all

 ./$(RUN_EXE)

clean:

 rm -f $(TETRIS_EXE) $(MUSIC_EXE) $(RUN_EXE)

8.3.6 runner.cpp
#include <iostream>

#include <cstdlib>

#include <pthread.h>

void* run_music(void*) {

 std::cout << "Starting music loop..." << std::endl;

 int ret = std::system("./audio");

 std::cout << "Music loop exited with code " << ret << std::endl;

 return nullptr;

}

void* run_game(void*) {

 std::cout << "Starting Tetris..." << std::endl;

 int ret = std::system("./tetris");

 std::cout << "Tetris exited with code " << ret << std::endl;

 return nullptr;

}

int main() {

 pthread_t music_thread, game_thread;

 if (pthread_create(&music_thread, nullptr, run_music, nullptr)) {

 std::cerr << "Error creating music thread" << std::endl;

 return 1;

 }

96

 if (pthread_create(&game_thread, nullptr, run_game, nullptr)) {

 std::cerr << "Error creating game thread" << std::endl;

 return 1;

 }

 pthread_join(music_thread, nullptr);

 pthread_join(game_thread, nullptr);

 std::cout << "Both music and game have exited." << std::endl;

 return 0;

}

8.3.7 tetris.cpp
#include "tetris.hpp"

#include <algorithm>

#include <array>

#include <random>

/*

Game logic based on open source Tetris cpp code by Nuruzzaman Milon:

(https://github.com/milon/Tetris)

SRS system logic based on Harddrop Wiki article: (https://harddrop.com/wiki/SRS)

*/

//Full Super‑Rotation System (SRS) wall‑kick tables

static const int SRS_KICKS_JLSTZ[4][5][2] = {

 { {0, 0}, {-1, 0}, {-1, 1}, {0, -2}, {-1, -2} },

 { {0, 0}, {1, 0}, {1, -1}, {0, 2}, {1, 2} },

 { {0, 0}, {1, 0}, {1, 1}, {0, -2}, {1, -2} },

 { {0, 0}, {-1, 0}, {-1, -1}, { 0, 2}, {-1, 2} }

};

static const int SRS_KICKS_I[4][5][2] = {

 { {0, 0}, {-2, 0}, {1, 0}, {-2, -1}, {1, 2} },

 { {0, 0}, {-1, 0}, {2, 0}, {-1, 2}, {2, -1} },

 { {0, 0}, {2, 0}, {-1, 0}, {2, 1}, {-1, -2} },

 { {0, 0}, {1, 0}, {-2, 0}, {1, -2}, {-2, 1} }

};

//Make Tetromino

97

static Tetromino make_piece(std::initializer_list<const char*> rows,

 uint8_t tile,

 PieceType type) {

 Tetromino t{};

 t.type = type;

 int row = 0;

 for (auto line : rows) {

 for (int col = 0; col < 4 && line[col]; ++col)

 if (line[col] == '#') t.mask[row][col] = tile;

 ++row;

 }

 return t;

}

//Define Tetromino shapes and colors

static const std::array<Tetromino, 7> SHAPES = {

 make_piece({"....","####","....","...."}, BLUE, PieceType::I), // I spawn

 make_piece({"....","#...","###.","...."}, RED, PieceType::J), // J spawn

 make_piece({"....","..#.","###.","...."}, YELLOW, PieceType::L), // L spawn

 make_piece({"....",".##.",".##.","...."}, MAG, PieceType::O), // O spawn

 make_piece({"....","..##",".##.","...."}, GREEN, PieceType::S), // S spawn

 make_piece({"....",".###","..#.","...."}, CYAN, PieceType::T), // T spawn

 make_piece({"....",".##.","..##","...."}, PURPLE, PieceType::Z) // Z spawn

};

// Rotate a single 4×4 Tetromino mask 90° clockwise

static Tetromino rot_right(const Tetromino& t) {

 Tetromino r{};

 r.type = t.type;

 for (int y = 0; y < 4; ++y)

 for (int x = 0; x < 4; ++x)

 r.mask[x][3 - y] = t.mask[y][x];

 return r;

}

//Rotate Tetromino a set number of times

Tetromino Tetris::rotate_piece(const Tetromino& t, int num_rot) const {

 int rcount = ((num_rot % 4) + 4) % 4;

 Tetromino q = t;

 for(int i = 0; i < rcount; ++i) {

 q = rot_right(q);

 }

98

 return q;

}

//Generate random Tetromino

static Tetromino rnd_piece() {

 static std::mt19937 gen{std::random_device{}()};

 static std::uniform_int_distribution<int>d(0, 6);

 return SHAPES[d(gen)];

}

//Set Tetromino

Tetris::Tetris() {

 cur = rnd_piece();

 nxt = rnd_piece();

 spawn();

}

//Spawn current Tetromino

void Tetris::spawn() {

 px = 5;

 py = 0;

 rot = 0;

 cur = nxt;

 nxt = rnd_piece();

 if (collision(px, py, cur, rot)) {

 over = true;

 }

}

//Calculate collisions

bool Tetris::collision(int nx, int ny,

 const Tetromino& pc,

 int r) const

{

 Tetromino p = rotate_piece(pc, r);

 for(int y = 0; y < 4; ++y) {

 for(int x = 0; x < 4; ++x) {

 if (!p.mask[y][x]) continue;

 int gx = nx + x;

 int gy = ny + y;

 // Check again going off the left/right or below bottom

99

 if (gx < 0 || gx >= COLS || gy >= ROWS)

 return true;

 // Check against overlapping

 if (gy >= 0 && field[gy][gx])

 return true;

 }

 }

 return false;

}

//Move Left Function

void Tetris::move_left() {

 if (!paused && !over && !collision(px - 1, py, cur, rot)) --px;

}

//Move Right Function

void Tetris::move_right() {

 if (!paused && !over && !collision(px + 1, py, cur, rot)) ++px;

}

//Rotate Function

void Tetris::rotate() {

 if (paused || over) return;

 int old_r = rot;

 int new_r = (old_r + 1) & 3;

 const int (*kicks)[2] = nullptr;

 //Determine kick table according to Tetromino type

 if (cur.type == PieceType::I) kicks = SRS_KICKS_I[old_r]; //I

 else if (cur.type == PieceType::O) { //O

 //O Tetrominos rotate in place

 rot = new_r;

 return;

 }

 else kicks = SRS_KICKS_JLSTZ[old_r]; //JLSTZ

 //Try each of the 5 SRS tests

 for (int i = 0; i < 5; ++i) {

 int dx = kicks[i][0], dy = kicks[i][1];

 if (!collision(px + dx, py + dy, cur, new_r)) {

100

 px += dx;

 py += dy;

 rot = new_r;

 return;

 }

 }

}

//Soft Drop Function

void Tetris::soft_drop() {

 if (!paused && !over && !collision(px, py + 1, cur, rot)) ++py;

}

//Hard Drop Function

void Tetris::hard_drop() {

 if (paused || over) return;

 while (!collision(px, py + 1, cur, rot)) ++py;

 lock_piece();

}

//Pause Function

void Tetris::toggle_pause() {

 if (!over) paused = !paused;

}

//Gravity for Tetrominos

void Tetris::step() {

 if (paused || over) return;

 //Max speed achieved at level 30 (speed actually maxes out at a lower since

interval is an int)

 int interval = std::max(1, 30 / level);

 if (++tick % interval == 0) {

 if(!collision(px, py + 1, cur, rot)) ++py;

 else lock_piece();

 }

}

//Lock Tetromino in place

void Tetris::lock_piece() {

 Tetromino p = rotate_piece(cur, rot);

101

 for(int y = 0; y < 4; ++y)

 for (int x = 0; x < 4; ++x)

 if (p.mask[y][x]) field[py + y][px + x] = p.mask[y][x];

 clear_lines();

 spawn();

}

//Clear lines

void Tetris::clear_lines() {

 int cleared = 0;

 for(int y = 0; y < ROWS; ++y) {

 bool line_full = true;

 for(int x = 0; x < COLS; ++x) {

 if (!field[y][x]) { line_full = false; break; }

 }

 if (line_full) {

 for(int k = y; k > 0; --k) {

 field[k] = field[k - 1];

 }

 field[0].fill(0);

 ++cleared;

 }

 }

 if (cleared > 0) {

 lines_cleared += cleared;

 //increase level every 10 lines cleared

 level = (lines_cleared / 10) + 1;

 // Tetris scoring: 1 = 100, 2 = 300, 3 = 500, 4 = 800

 static const int SCORE_TABLE[5] = { 0, 100, 300, 500, 800 };

 // mod 5 is a failsafe for if somehow more than 4 lines are cleared at once

 score_val += SCORE_TABLE[cleared % 5];

 }

}

//Reset game state

void Tetris::reset() {

 lines_cleared = 0;

102

 score_val = 0;

 over = 0;

 level = 1;

 tick = 0;

 for (int i = 0; i < 20; ++i) field[i].fill(0); //Fill playfield with empty tiles

}

//Render helper functions for rendering each of the 4 tiles that make up a Tetromino

void Tetris::for_each_block(std::function<void(int, int, uint8_t)> cb) const

{

 Tetromino t = rotate_piece(cur,rot);

 for(int y = 0; y < 4; ++y)

 for(int x = 0; x < 4; ++x)

 if(t.mask[y][x]) cb(px + x, py + y, t.mask[y][x]);

}

void Tetris::for_each_next(std::function<void(int, int, uint8_t)> cb) const

{

 for(int y=0; y<4; ++y)

 for(int x=0; x<4; ++x)

 if(nxt.mask[y][x]) cb(x, y, nxt.mask[y][x]);

}

8.3.8 tetris.hpp
#ifndef TETRIS_HPP

#define TETRIS_HPP

#include <array>

#include <cstdint>

#include <functional>

enum class PieceType { I, J, L, O, S, T, Z };

constexpr int COLS = 15;

constexpr int ROWS = 20;

//The color to palette mapping (matches assets.h)

enum Cell : uint8_t {

 EMPTY = 0,

 BLUE = 2,

 GREEN = 3,

 RED = 4,

103

 CYAN = 5,

 YELLOW = 6,

 MAG = 7,

 PURPLE = 8

};

struct Tetromino {

 std::array<std::array<uint8_t,4>,4> mask{};

 PieceType type = PieceType::I; // Default of I will be overwritten later in

make_piece function

};

class Tetris {

public:

 Tetris();

 void step();

 void move_left();

 void move_right();

 void rotate();

 void soft_drop();

 void hard_drop();

 void toggle_pause();

 void reset();

 uint8_t playfield(int x, int y) const {

 return field[y][x];

 }

 void for_each_block(std::function<void(int, int, uint8_t)> cb) const;

 void for_each_next (std::function<void(int, int, uint8_t)> cb) const;

 int score() const {

 return score_val;

 }

 int lines() const {

 return lines_cleared;

 }

 int get_level() const {

 return level;

 }

 int get_px() const {

 return px;

 }

104

 int get_py() const {

 return py;

 }

 int get_rot() const {

 return rot;

 }

 const Tetromino& get_cur() const {

 return cur;

 }

 bool game_over() const {

 return over;

 }

 bool can_place(int nx, int ny) const {

 return !collision(nx, ny, cur, rot);

 }

 Tetromino get_rotated_piece() const {

 return rotate_piece(cur, rot);

 }

private:

 std::array<std::array<uint8_t,COLS>,ROWS> field{};

 Tetromino cur, nxt;

 int px = 5, py = 0, rot = 0;

 int tick = 0;

 bool paused=false, over=false;

 int score_val = 0;

 int lines_cleared = 0;

 int level = 1;

 void spawn();

 bool collision(int nx,int ny,const Tetromino& t,int r) const;

 void lock_piece();

 void clear_lines();

 Tetromino rotate_piece(const Tetromino& t,int r) const;

};

#endif

105

8.3.9 tiles.hex

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

07 07 07 07 07 07 07 07
07 07 07 07 07 07 07 07
07 07 07 07 07 07 07 07
07 07 07 07 07 07 07 07
07 07 07 07 07 07 07 07
07 07 07 07 07 07 07 07
07 07 07 07 07 07 07 07
07 07 07 07 07 07 07 07

0A 0A 0A 0A 0A 0A 0A 0A
0A 0A 01 01 01 01 01 0A
0A 01 01 01 01 01 01 0A
0A 01 01 01 01 01 01 0A
0A 01 01 01 01 01 01 0A
0A 01 01 01 01 01 01 0A
0A 01 01 01 01 01 01 0A
0A 0A 0A 0A 0A 0A 0A 0A

0A 0A 0A 0A 0A 0A 0A 0A
0A 0A 02 02 02 02 02 0A
0A 02 02 02 02 02 02 0A
0A 02 02 02 02 02 02 0A
0A 02 02 02 02 02 02 0A
0A 02 02 02 02 02 02 0A
0A 02 02 02 02 02 02 0A
0A 0A 0A 0A 0A 0A 0A 0A

0A 0A 0A 0A 0A 0A 0A 0A
0A 0A 03 03 03 03 03 0A
0A 03 03 03 03 03 03 0A
0A 03 03 03 03 03 03 0A
0A 03 03 03 03 03 03 0A
0A 03 03 03 03 03 03 0A

106

0A 03 03 03 03 03 03 0A
0A 0A 0A 0A 0A 0A 0A 0A

0A 0A 0A 0A 0A 0A 0A 0A
0A 0A 04 04 04 04 04 0A
0A 04 04 04 04 04 04 0A
0A 04 04 04 04 04 04 0A
0A 04 04 04 04 04 04 0A
0A 04 04 04 04 04 04 0A
0A 04 04 04 04 04 04 0A
0A 0A 0A 0A 0A 0A 0A 0A

0A 0A 0A 0A 0A 0A 0A 0A
0A 0A 05 05 05 05 05 0A
0A 05 05 05 05 05 05 0A
0A 05 05 05 05 05 05 0A
0A 05 05 05 05 05 05 0A
0A 05 05 05 05 05 05 0A
0A 05 05 05 05 05 05 0A
0A 0A 0A 0A 0A 0A 0A 0A

0A 0A 0A 0A 0A 0A 0A 0A
0A 0A 06 06 06 06 06 0A
0A 06 06 06 06 06 06 0A
0A 06 06 06 06 06 06 0A
0A 06 06 06 06 06 06 0A
0A 06 06 06 06 06 06 0A
0A 06 06 06 06 06 06 0A
0A 0A 0A 0A 0A 0A 0A 0A

0A 0A 0A 0A 0A 0A 0A 0A
0A 0A 08 08 08 08 08 0A
0A 08 08 08 08 08 08 0A
0A 08 08 08 08 08 08 0A
0A 08 08 08 08 08 08 0A
0A 08 08 08 08 08 08 0A
0A 08 08 08 08 08 08 0A
0A 0A 0A 0A 0A 0A 0A 0A

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

107

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

0e 0e 0e 0e 0e 0e 0e 0e
0e 0e 0e 0e 0e 0e 0e 0e
0e 0e 0e 0e 0e 0e 0e 0e
0e 0e 0e 0e 0e 0e 0e 0e

108

0e 0e 0e 0e 0e 0e 0e 0e
0e 0e 0e 0e 0e 0e 0e 0e
0e 0e 0e 0e 0e 0e 0e 0e
0e 0e 0e 0e 0e 0e 0e 0e

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

109

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

110

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

111

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

112

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

113

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

114

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

115

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

116

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

117

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

118

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

119

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

120

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

121

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

122

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

123

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

124

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

125

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

126

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

127

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

128

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

129

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

130

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

131

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

132

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

133

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

134

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

135

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

136

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

137

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

138

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

139

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

140

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

141

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

142

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

143

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

144

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

145

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

146

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

147

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

148

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

149

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

150

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

151

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

152

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

153

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

154

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

155

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

156

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

157

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

158

	1. Introduction
	2. Project Overview
	
	3. Hardware
	3.1. Initial Plans
	3.2. Final Hardware
	3.2.1 Final Hardware Details
	3.2.2 Hardware-Software Interface
	3.2.3 Final Hardware Resource Utilization

	
	
	
	4. Software
	4.1 USB SNES Controller
	4.2. Game Logic
	4.2.1 Overall Game FSM
	4.2.2 Start Screen
	4.2.3 Gameplay Logic
	4.2.4 SRS Rotation System
	4.2.5 Game Over Screen​​

	4.3. Display Logic
	4.4. Dual Threads and Audio

	5. USB Audio Implementation
	
	6. Contributions and Lessons Learned
	6.1. Lessons Learned
	6.2. Contributions

	7. References
	
	
	
	
	8. Code
	8.1. Sprite Hardware (Not Using)
	8.1.1 address_decoder.sv
	8.1.2 memories.sv
	8.1.3 ppu_asm.sv
	
	8.1.4 ppu_top.sv
	
	8.1.5 priority_encoder.sv
	
	8.1.6 shift_registers.sv
	8.1.7 vga.sv

	
	
	8.2. Tile Hardware
	8.2.1 tiles.sv
	8.2.2 twoportbram.sv
	8.2.3 vga_counters.sv
	8.2.4 vga_tiles.sv
	
	8.2.5 soc_system_top.sv

	
	8.3. Software Code
	8.3.1 assets.h
	8.3.2 audio.cpp
	8.3.3 font.h
	8.3.4 main.cpp
	8.3.5 Makefile
	8.3.6 runner.cpp
	8.3.7 tetris.cpp
	8.3.8 tetris.hpp
	8.3.9 tiles.hex

