
FPGA Tetris Game
Michael Lippe, Bhargav Sriram, Garvit Vyas

CSEE 4840: Embedded Systems
Prof. Stephen Edwards

May 13th, 2025



Overview

Figure 1: Tetris Pieces

● Our project aims to develop a hardware/software system capable of 
playing Tetris.

● Tetris is a classic puzzle video game revolving around the 
strategic placement of falling geometric shapes known as 
Tetrominos. 

● The goal is to rotate and arrange these pieces in such a manner 
that forms complete horizontal lines, which are then cleared from 
the screen, and points are given based on the number of lines 
cleared. 

● As the game goes on, the falling speed of the blocks increases, and 
thus so does the difficulty.



System Block Diagram

Figure 2: System Block Diagram

● After verifying the verilog modules for 
our original design, we realized that we 
made our system too complex and 
verifying everything together within a 
week and a half while also figuring out 
the compilation and software was not 
feasible

● As such, we decided to take a tile only 
approach as tetris does not need sprites

● We decided to pivot and base our design 
off the provided tile generator so we 
could focus on the hardware-software 
interactions and the software

● We modified the existing tile hardware to 
add a tile map cache to help resolve 
flickering issues. The cache pulls from 
the tile map at vblank and stay 
consistent throughout the frame



Hardware Block Diagram

TILE MAP 
CACHE

BLANK

HS

VS

RGB

TS PORT A:14 D:4 PALETTE PORT A:4 D:24
TM PORT A:13 D:8

244

10

9

3

3

● Added Tile Map Cache to help reduce tearing/flickering 

Figure 3: HW Block Diagram (Based on Professor Edwards’ diagram [2])

13 8 8 14



Register Mapping
● Table 1: 

REGION POINTER BASE ADDRESS 
ADDRESS 
RANGE

SIZE PURPOSE

TileMap TM 0xFF20_0000
0xFF20_0000–
0xFF20_1FFF

8 KiB
8-bit indices for a 
128×64 tile grid

Palette PA 0xFF20_2000
0xFF20_2000–
0xFF20_203F

48 B
16 entries × 3 bytes 
(24-bit RGB colors)

TileSet TS 0xFF20_4000
0xFF20_4000–
0xFF20_7FFF

8 KiB

4 bits-per-pixel 
graphics (256 tiles 
× 8×8)



Resource Utilization

Figure 4: Resource Utilization



USB Audio
● Tried two open source hardware audio implementations 

for the DE1-SoC and couldn’t get either to work
● Decided to implement audio via USB
● Provided kernel did not have snd-usb-audio module
● Kernel: clone linux-socfpga v4.19 → make 

socfpga_defconfig
● Config: make menuconfig → enable “USB Audio 

(snd-usb-audio)” under Sound → USB
● Load modules using modprobe
● Libraries: ALSA + libmpg123 & libao installed

○ Use libmpg to decode mp3 and libao to play decoded 
audio over usb via ALSA

Figure 5: USB Audio Flow

USB DAC

Tetris.mp3

libmpg123 + libao

ALSA Subsystem

snd-usb-audio



USB SNES-Style Controller

● Plug a standard SNES-style controller into the DE1-SoC’s 
USB-host port. The FPGA is running a USB-HID stack.

● Button mapping: 
○ L, R, or X: rotate piece
○ D-pad left: move the current piece left 
○ D-pad right: move the current piece right
○ D-pad down, A, or Y: soft drop
○ B: instantly drop the piece to the bottom 

(hard-drop)
○ Start: start game from start screen or game over
○ Select: pause game

Figure 6: USB Controller



Tileset

● 10 tiles used

● Tile 0 is for the background

● Tile 1 is for the playfield and next piece 
bounding boxes

● Tiles 2 - 7 are for constructing the 
Tetrominos

● Tile 13 is for the ghost piece and displaying 
text

Figure 7: Tetris Tileset



Start Screen
FPGA & VRAM Init
 • map_fpga() → mmap TM/PA/TS regions (8 KB tilemap, 64 B 
palette, 16 KB tileset)
 • load_assets() → upload 16-color palette + tileset, 
clear tilemap

Render Title & Prompt
 • show_start() → memset(TM,0) → draw_string() at 
(10,20), (10,40), (10,50)

Controller Detection
 • open_controller() scans /dev/input/event* for USB SNES 
pad → returns FD (open device file)

Wait for START
 • Main loop state=START → poll_input() until EV_KEY code 
297 (start button) → state = PLAY Figure 8: Tetris Start Screen



SW Game Logic
spawn()

● Position new piece at center ‐top (px=5, py=0), 
reset rotation

● If it collides immediately → set game-over

poll_input()

● Read controller events every loop
● Map D-pad to left/right/soft-drop, buttons to 

rotate/hard-drop/pause

Gravity Tick (step)

● Advance a frame counter
● On each level-dependent interval, attempt to move 

piece down

Collision Check

● No collision: piece falls one row → back to input
● Collision: piece locks in place

lock_piece()

● Merge tetromino into playfield array
● Trigger clear_lines()

clear_lines() → spawn()

● Remove any full rows, shift above rows down
● Update score, lines cleared, and level
● Call spawn() for next piece (or set game-over on 

failure)

Game-Over & Reset

● On game-over state: display “GAME OVER”
● Wait for Start button → reset playfield, score, level 

→ back to spawn



SRS Rotation
Four Orientations: Pieces cycle through 0°, 90°, 180°, and 270° states on each 
turn.

CW-Only Input: Every rotation increments the state by one:
 state = (state + 1) mod 4 .

Defined Pivot: Each tetromino spins around its designated origin within a 4×4 
block grid.

Wall-Kick Trials: If the raw rotation collides, SRS sequentially tests up to five 
translation offsets.

JLSTZ Kick Table: J, L, S, T, Z pieces use offsets (0,0), (−1,0), (−1,+1), (0,−2), 
(−1,−2)

I-Piece Kicks: The I tetromino’s own sequence: (0,0), (−2,0), (+1,0), (−2,−1), 
(+1,+2)

O-Piece Exception: The O tetromino rotates in place with no kicks applied

First-Valid Wins: The first offset that resolves the collision is accepted; if none 
do, the rotation is canceled.

Figure 9: Tetris SRS Rotation [4]



Gameplay Screen
Game Update: tetris.step() handles gravity, 
collision, rotation, line clears

Render Pipeline
 • draw_borders() → static frame around playfield & 
next-box
 • draw_playfield() → draw playfield and settled blocks
 • draw_piece() → overlay active tetromino
 • draw_next() → preview next piece in box
 • draw_hud() → update SCORE & LINES via 
draw_string()

State Transition : if tetris.game_over() → state = 
OVER, call show_game_over()

Frame Timing
 • usleep(16666) → ~60 Hz update rate Figure 10: Tetris Gameplay Screen



End Screen

● Clear Playfield: memset(TM,0)
● Draw Text:

○ draw_string(10, 10, "GAME OVER")
○ draw_string(10, 20, score) & draw_string(10, 30, 

lines)
● Prompt Restart: draw_string(10, 40, "START: RESTART")
● Wait for Start

Figure 11: Tetris End Screen



References Used

● [1] https://www.cs.columbia.edu/~sedwards/classes/2025/4840-spring/tiles.pdf
● [2] https://www.cs.columbia.edu/~sedwards/classes/2025/4840-spring/tiles.tar.gz
● [3] https://github.com/milon/Tetris
● [4] https://harddrop.com/wiki/SRS 
● [5] https://github.com/altera-fpga/linux-socfpga/tree/v4.19
● [6] https://github.com/Ameba8195/Arduino/blob/master/hardware_v2/cores/arduino/font5x7.h



DEMO: GAME START


