FPGA Tetris Game-



Overview

° Our project aims to develop a hardware/software system capable of
playing Tetris.

° Tetris is a classic puzzle video game revelving around the
strategic placement of falling geometric shapes known as
Tetrominos.

o The goal is to rotate and arrange these pieces in such a manner
that forms complete horizontal lines, which are then cleared from
the screen, and points are given based on the number of lines
cleared.

o As the game goes on, the falling speed of the blocks increases, and
thus so does the difficulty.

Figure 1: Tetris Pieces



System Block Diagram

o After verifying the verilog modules for

Software
our original design, we realized that we (HPS)
made our system too complex and
Thread 1:
verifying everything together within a Input Game
week and a half while also figuring out Logic
the compilation and software was not usB HW TILE
Gamepad GENERATOR
feasible
° As such, we decided to take a tile only Tt}{izg}z'
approach as tetris does not need sprites Routine

o We decided to pivot and base our design
off the provided tile generator so we
could focus on the hardware-software
interactions and the software

o We modified the existing tile hardware to Eerphetals

Output
onc | I e
DAC Screen
: USB
the tile map at vblank and stay Audio Speaker

consistent throughout the frame

add a tile map cache to help resolve

flickering issues. The cache pulls from

Figure 2. System Block Diagram



Hardware Block Diagram \m“

TS PORT A:14 D:4 PALETTE PORT A:4 D:24
ﬂk

TM PORT A:13 D:8

| I

I|lI :
A 3 l

TILEMAP 8 TILESET |3 16K x 4 16 x 24
TILE MAP <>
ADDRESS bl ADDRESS |gmgll T ESET PALETTE
VGA A RAM RAM
= A

COUNTERS

BLANK
HS
A A

_ BLANK

\/

HS

V§

» V5

Figure 3: HW Block Diagram (Based on Professor Edwards' diagram [2])

® Added Tile Map Cache to help reduce tearing/flickering



Register Mapping

® Table 1:
TileN ™ 0xFF20_0000 OXFF0-0000- 1 o e :;:::41:"1“5 f:r :
2 x - - - -
esap 0XFF20_1FFF ! e e
Palett PA oxEF20_2000 0xFF20_2000- 4 B 16 entries X 3 bytes
} -
alette 0xFF20_203F (24-bit RGB colors)
4 bits-per-pixel
TileSet TS 0xFF20_4000 OXFF20-8000- 1 o e hics (256 til
i } - i rapnlcs lles
1leqe OXFF20_7FFF 18 | 9rap
. X §x8)
| |
i i— -



Resource Utilization

Fitter Status ; Successful - Sun May 11 13:31:59 2025
Quartus Prime Version ; 21.1.0 Build 842 10/21/2021 S] Lite Edition
Revision Name ; soc _system
Top-level Entity Name ; soc system top
Family ; Cyclone V
Device ; SCSEMAS5SF31C6
Timing Models ; Final
Logic utilization (in ALMs) : 416 / 32,070 (1 % )
; Total registers ; 622
Total pins ; 362 / 457 ( 79 % )
Total virtual pins ; O
Total block memory bits ; 196,992 / 4,065,280 ( 5 % )
Total RAM Blocks ; 26 / 397 ( 7 %
Total DSP Blocks : 0 /87 (0 %)
Total HSSI RX PCSs -
Total HSSI PMA RX Deserializers
Total HSSI TX PCSs
Total HSSI PMA TX Serializers
Total PLLs

Figure 4: Resource Utilization



USB Audio

® Tried two open source hardware audio implementations
for the DE1-SoC and couldn’t get either to work Tetris.mp3

® Decided to implement audio via USB
® Provided kernel did not have snd-usb-audio module libmpg123 + libao
® Kernel: clone linux-socfpga v4.19 — make
socfpga_defconfig ALSA Subsystem

e Config: make menuconfiy — enable “USB Audio
(snd-usb-audio)” under Sound — USB snd-usp-audio

® Load modules using modprobe
® Libraries: ALSA + libmpgl23 & libao installed USB DAC
O Use libmpg to decode mp3 and libao to play decoded

audio over usb via ALSA

Figure 5: USB Audio Flow



USB SNES-S5tyle Controller

® Plug a standard SNES-style controller into the DE1-SoC's

USB-host port. The FPGA is running a USB-HID stack. s

Kiwitata
® Button mapping:
O L, R, or X: rotate piece

D-pad left: move the current piece left
D-pad right: move the current piece right
D-pad down, A, or Y. soft drop
B: instantly drop the piece to the bottom
(hard-drop)
O  Start: start game from start screen or game over
O Select: pause game

o O O O

Figure 6: USB Centreller



T

ileset

10 tiles used
Tile 0 is for the background

Tile 1 is for the playheld and next piece
bounding boxes

Tiles 2 - 7 are for constructing the
Tetrominos

Tile 13 is for the ghost piece and displaying
text

Figure 7. Tetris Tileset



Start Screen

FPGA & VRAM Init

- map-fpga() — mmap TM/PA/TS regions (8 KB tilemap, 64 B
palette, 16 KB tileset)

= load_assets() — upload l6-color palette + tileset,

clear tilemap

Render Title & Prompt
= show_start() — memset(TM,0) — draw_string() at
(10,20), (10,40), (10,50)

Controller Detection
= open_controller() scans /dev/input/events+ for USB SNES

pad — returns FD (open device file)

Wait for START
= Main loop state=START — poll_input() until EV_KEY code
297 (start button) — state = PLAY

*
‘.45

TETEIS FFISA

FEESS 2TART
TO STAET

Figure 8: Tetris Start Screen




SW Game Logic

spawn()

® Position new piece at center - top (px=5, py=0),
reset rotation
® If it collides immediately — set game-over

poll_input()

®  Read controller events every loop
®  Map D-pad to left/right/soft-drop, buttons to
rotate/hard-drop/pause

Gravity Tick (step)

®  Advance a frame counter
e 0On each level-dependent interval, attempt to move
piece down

Collision Check

° No collision: piece falls one row — back to input
° Collision: piece locks in place

lock_piece()

®  Merge tetromino into playfield array
® Trigger clear_lines()

clear_lines() — spawn()

®  Remove any full rows, shift above rows down

®  lpdate score, lines cleared, and level

® Call spawn() for next piece (or set game-over on
failure)

Game-Over & Reset

®  On game-over state: display “GAME OVER"
®  Wait for Start button — reset playfield, score, level

2 s ®



SRS Rotation
Four Orientations: Pieces cycle through 0°, 90%, 180%, and 270° states on each

turn.

CW-Only Input: Every rotation increments the state by one:
state = (state + 1) mod 4 .

Defined Pivot: Each tetromino spins around its designated origin within a 4X4
block grid.

Wall-Kick Trials: If the raw rotation collides, SRS sequentially tests up to five
translation offsets.

JLSTZ Kick Table: J, L, S, T, 2 pieces use oftsets (0,0), (-1,0), (-1,+1), (0,-2),
('1|'2)

I-Piece Kicks: The I tetromino’s own sequence: (0,0), (-2,0), (+1,0), (-2,-1),
(+1,+2)

0-Piece Exception: The 0 tetromino rotates in place with no kicks applied

First-Valid Wins: The first offset that resolves the collision is accepted; if none

L 3
L .
\

Figure 9: Tetris SRS Rotation [4]



Gameplay Screen

Game Update: tetris.step() handles gravity,
collision, rotation, line clears

Render Pipeline
= draw_borders() — static frame around playfield &

next-box

= draw_playfield() — draw playfield and settled blocks
= draw_piece() — overlay active tetromino

- draw_next() — preview next piece in box LE |.._| . 1

= draw_hud() = update SCORE & LINES via

draw-stringf) = S |: ':l E: E 1 E E
neiwaiiyir LIMES 1

Frame Timing
. usleep(lﬁ“ﬁ) . #60 Hz update rate Figure 10: Tetris Gameplay Screen



End Screen

® (Clear Playfield: memset(TN,0)
® Draw Text:
draw_string(10, 10, “GAME OVER")
O  draw_string(10, 20, score) & draw_string(10, 30,
lines)
® Prompt Restart: draw_string(10, 40, "START: RESTART")
® Wait for Start

04
.
‘.45

SAME OUVER
2C0OREE 1@
LIMES 1
2TAET &
FESTART

Figure 11: Tetris End Screen




References lUsed

[1] https://www.cs.columbia.edu/¥sedwards/classes/2025/4840-spring/tiles.pdf

[2] https://www.cs.columbia.edu/~¥sedwards/classes/2025/4840-spring/tiles.tar.gz

[3] https://github.com/milon/Tetris

[4] https://harddrop.com/wiki/SRS

[6] https://github.com/altera-fpga/linux-socfpga/tree/vd.19

[6] https://github.com/Ameba8195/Arduinoe/blob/master/hardware_v2/cores/arduino/font5x7.h



= L u
]
[ ]
n
- [
. [
- | ™ ™
=
u [ ]
=
n
[
[ ]
]
]
- ]
(] =
]
L] [ ]
[ [ ]
]
[
[
[
n
L]
[
[ ] []




