
N-Body
Accelerator
Isaac Trost (wit2102)
Kristian Nikolov (kdn2117)
Robert Pendergrast (rlp2153)
Moises Mata (mm6155)
Adib Khondoker (aak2250)

CSEE4840 Spring 2025

Project Overview

Spring 2025CSEE4840

Background: N-Body calculations, used to determine the chaotic motions between
N interacting masses, are critical in the fields of astrophysics, orbital dynamics, and
molecular dynamics.

Problem: N-Body calculations are computationally expensive and SLOW, requiring
many dividers and multipliers

GOAL: Develop a computational accelerator that can perform N<512 Body
simulations

Result… We fought the good fight and we came out victorious

High-Level System Design

Spring 2025CSEE4840

nbody.sv

Spring 2025CSEE4840

SW_READ_WRITE Waits for software writes via bus (X,Y,VX,VY,M), IDLE STATE

CALC_ACCEL Iterates body pairs, computes acceleration with getAccl,
updates velocity

Update_POS Update positions using Leapfrog step

GO, READ Control Handshake

DONE High when sim step
completes

addr[15:9] Select reg/mem

addr[8:0] Select body index

write/readdata 32bit avalon bus IO

getaccel.sv

Spring 2025CSEE4840

● Computes
○ aₓ = m₂ · (x₁ − x₂) / |r|³
○ aᵧ = m₂ · (y₁ − y₂) / |r|³

AddSub 3 units Subtract, add

Mult 6 Units Square, cube, scale

InvSqrt 1 unit Inv sqr root

shift_reg 4 units Align pipeline timing

Signal Width Purpose

x1/y1 64 Position body 1

x2/y2 64 Position body 2

m2 64 Mass body 2 (pre mult by G)

ax/ay 64 Acc on body 1 from body 2

Clk, rst 1 Clock / synchronous reset

MultTime 11 cycles

AddTime 20 cycles

InvSqrtTime 27 Cycles

Accelerator Logic

Spring 2025CSEE4840

● SW Read/Write
● Calculate Acceleration and

update velocity
● Update position

Calculating Acceleration and Velocity

1 20 3

0

0

1 20 3

1

1

0

1 20 3

2

2

1

0

1 20 3

3

3

2

1

0

1 20 3

0

0_old

3

2

1

0

CSEE4840

Update Position

Hardware
Validation

State 0: Read/Write (Input)

State 1: Begin acceleration computation

State 2: Begin position update

State 0: Reading output values

Testbench Final Results

Software

Accelerator Software Interface

Spring 2025CSEE4840

32-bit Memory-Mapped Interface with 16 Bit addresses:

| 0000000 | 000000000 |
 Parameter Body Number

-> 9 Bits for Body Number 0-511

Parameter Mappings:

0x44 - X_LOW 0x48 - M_LOW
0x45 - X_UPPER 0x49 - M_UPPER

0x46 - Y_LOW 0x4A - VX_LOW
0x47 - Y_UPPER 0x4B - VX_UPPER

0x4C - VY_LOW
0x4D - VY_UPPER

Read Addresses:

0x51 - Read_X_LOW
0x52 - Read_X_UPPER

0x53 - Read_Y_LOW
0x54 - Read_Y_UPPER

EX: #define X_ADDR_LOW(base, body) (base) + ((body<<2) + (0x44 << 11))

Accelerator Driver

Spring 2025CSEE4840

WRITE POSITIONS WRITE PARAMETERS READ POSITIONS

NOTE - Positions and parameters are written and read as upper 32 and lower 32 bits separately:

memcpy(&x_bits, &body_parameters->x, sizeof(uint64_t));

iowrite32(x_bits[0], X_ADDR_LOW(dev.virtbase, i));

iowrite32(x_bits[1], X_ADDR_HIGH(dev.virtbase, i));

typedef struct {

 double x, y, vx, vy,

m;

 int n;

} body_t;

typedef struct {

 int N;

 int gap;

} nbody_sim_config_t;

typedef struct{

 double x, y;

 int n;

} body_pos_t;

Control Flow

Spring 2025CSEE4840

SW Sets GO high to start sim

After performing GAP
iterations,
Hardware writes DONE signal

Upon receiving DONE,
Software Asserts Read

DONE goes
down after READ
is raised

After DONE is lowered, software
reads the positions from memory

User Logic

Spring 2025CSEE4840

- Accelerator reads selected input CSV from

userspace.

- Simulation parameters determined by user

- Gap & Iterations

- After acceleration, positions for each iteration is

written to output csv file

But wait! There’s more

Display Hardware Interface

Spring 2025CSEE4840

Memory mapped VGA Frame Buffer Module:
32 bit words accessed through 15 bit memory
addresses, which maps to 32 pixels on the screen

- The read address passed on to memory is
calculated as so below, and uses both vcount and
hcount with an appropriate offset, to ensure the
address is passed to memory in time

 assign vcount_32 = {22'b0, vcount};

 assign vcount_x_512 = vcount_32 << 8;

 assign vcount_x_128 = vcount_32 << 10;

 assign hcount_32 = (hcount > 11'd1300) ? 32'd1300 : {21'b0, hcount};

 assign vcountx20 = vcount_x_128 + vcount_x_512;

 assign placecounter = vcountx20 + hcount_32 + 32'd2;

 assign rdaddress = placecounter[20:6];

Display Software Interface

Spring 2025CSEE4840

Kernel Module with specific functions to facilitate N-Body
animations

IOCTLS

WRITE_PROPERTIES - Copies the current state for

all bodies in the timestep from user to kernel

space. Writes each body as a circle into the

framebuffer, which is written to memory at the

end.

CLEAR_SCREEN - Clears both the virtual framebuffer

and the corresponding area in memory

FILL_SCREEN - Writes a pattern directly to

framebuffer memory. Used in debugging to display a

filled screen, checker pattern.

Display Software Interface

Spring 2025CSEE4840

Userspace program that allows playback from CSV with adjustable play speed

static void convert_coordinates(float
nbody_x, float nbody_y,short
*display_x, short *display_y) {

 *display_x = (short)((nbody_x +
500.0) / 1000.0 * (DISPLAY_WIDTH));
 *display_y = (short)((nbody_y +
500.0) / 1000.0 * (DISPLAY_HEIGHT));

}

After this coordinate conversion, values are

sent to the driver through the ioctl call!

https://docs.google.com/file/d/1VIkYQ2BWxvswuKJNsS5h9aT9K67jQgTL/preview

DEMO

Spring 2025CSEE4840

