

DESIGN DOCUMENT FOR FPGA NEURAL NETWORK

ACCELERATION

Stephen Ogunmwonyi (iso2107)

Aymen Ahmed Norain (aan2161)

Bradley Chen Jocelyn (bcj2124)

Connor James Espenshade (cje2136)

Table of Contents:

Introduction 2
Problem Identification & Dataset 3
Model Architecture 4
General System Architecture / Associated Files Overview 6

Software File Definitions 6
Userspace Application: user.c
Kernel Driver: control.c
Header Interface for user.c and control.c: control.h 6

Hardware File Definitions 7
Top-Level Module: user.c
Memory Modules: image_mem, data_mem, etc. 7
We had a series of memory modules to store key data such as the weight memory and
the bias memory. We also instantiated multiple memory modules for partially computed
values. We would store the values of the pooling layer in an on chip RAM whilst we
waited for the 12 filters to finish convolving and then we stored the final dense layer
outputs on board an on chip RAM to give the software a memory to access the data
from. 7
Conv_weights_mem = 108 x 8 7
Conv_bias_mem = 10 x 8 7
Dense_weights_mem = 2028 x 8 7
Dense_weights_bias = 10 x 8
Control Unit (with FSM): 7
Convolution unit: 8
Convolution Computation, Partial Adders Over 5 Cycles: 10
Pooling Unit: 11
The Dense Unit: 12

System Level Block Diagram 13
System Level Dataflow 13

Computation Module 15
Computation Block 17

Memory Resource Allocation 18
Hardware/Software Interfaces 22
Testing the Accelerator 27
Bibliography 29

1

2

Introduction

This project focused on establishing the foundational software interface for an

FPGA-accelerated neural network designed for MNIST digit recognition. The implemented

system consists of a userspace application (user.c) running on the Altera DE10-SoC's HPS,

which communicates with a conceptual hardware accelerator on the FPGA fabric via a custom

Linux kernel driver (control.c). The core achievement from the software perspective is the

successful implementation and testing of the communication protocol. This includes the

userspace logic for loading bit-packed image data (pixel, address, and a load completion signal)

to the hardware, polling a hardware status register for computation completion, and retrieving the

resulting 10-element dense layer output (classification scores) from the accelerator.

3

Problem Identification & Dataset

For this project, we sought to classify a series of images as representing certain digits.

That is, given a black and white, low-resolution image of a handwritten digit, the model

implemented in our hardware/software interface running directly on the FPGA should classify

which number the digit most closely resembles. To solve this problem, we selected the MNIST

dataset, a collection of 70,000 grayscale images of handwritten digits. Each digit is 28x28 pixels,

with each pixel stored as an 8-bit grayscale value ranging from 0 to 255, where 0 is black and

255 is white.

To reduce memory complexity, we binarize each pixel: black pixels are represented with

a 0 and white pixels represented with a 1. This allows us to store each pixel in 1 bit, or each

image in 784 bits, or 98 bytes. Understanding the train/test split in the dataset—where testing

images are not used to determine the weights during training—to be 60,000 and 10,000 images

for model training and testing, all 10,000 test images would fit in just under 1MB. For this

proof-of-concept stage, however, we will consider 1 image.

4

Python

Model Architecture

We carefully evaluated multiple algorithms to implement on the device. We considered

implementing large general CNNs for general image classification: Resnet-18, SqueezeNet, and

MobileNet. While these large CNNs do not require any additional training, they require a great

amount of memory and have their own quirks including residual connections and complex

interconnected webs of convolutions. As we are developing models to detect MNIST data

samples, this is a much simpler problem space and does not require implementing a full CNN

off-the-shelf. Instead, we intend to construct our own neural networks from Keras and

TensorFlow tutorials, one leveraging convolution and one only leveraging dense layers (Chollet,

“Training”). We intend to build the basis for a system that can take simple Keras models trained

off device and perform inference live, allocating various hardware accelerating components to

speed up different Keras layers. Therefore, convolution, pooling, padding, flattening, and dense

models (matrix multiplication) should be built in hardware as much as possible.

For this accelerator, we implemented the following model in TensorFlow:

model = keras.Sequential([

 keras.Input(shape=input_shape),

 layers.Conv2D(12, (3,3), activation="relu"),

 layers.MaxPooling2D((2,2)),

 layers.Flatten(),

 layers.Dense(num_classes, activation="softmax"),

])

This model is largely inspired by a Keras tutorial, with the exception of removing the

second convolution layer as well as paring down the number of filters on the first convolution

5

https://keras.io/examples/vision/mnist_convnet/

layer, adaptations that resulted in a less than 1% drop in accuracy (Chollet). The first convolution

layer has 12 filters and applies convolution with a kernel size of 3x3, followed by a ReLU

activation function. The results, with output shape 12x26x26, are then pooled to 12x13x13,

before being flattened, where the multidimensional array is unspooled to a unidimensional

vector. Finally, these 2,028 inputs are fed into a dense layer, where the pooled convolution results

are condensed into the 10 output labels (digits) available from training.

Considering convolution more seriously, consider Figure 1. The 3x3 kernel selects a 3x3

window of pixels, originating in the top left corner. For some 3x3 grid, each pixel is multiply by

the corresponding weight (top/middle/bottom left/middle/right, depending on location within the

grid). These products are then summed to determine the output for that kernel location and filter,

before sliding the filter over one column. This is repeated until the end of the row is met, where

the kernel window then scans to the beginning of the row and shifts one row down until all pixels

are processed. To reduce excess information, the pooling module takes a separate 2x2 window,

and outputs the maximum value of the four values in the window, reducing memory 4x.

Figure 1: Convolutional 2D Computation of One Output, Quantized Weights without Scale

Factor

6

 The dense layer, on the other hand, takes the flattened 12x13x13 output from pooling and

performs matrix multiplication between each output and one weight. Since there are 2028 inputs

and 10 output classes, there are 20,280 weights and 10 biases, one per each possible outcome.

The matrix multiplication occurs to create one element per 2028 weights. The first 2028

multiplications, summed together, correspond to the dense layer’s output for the classification of

a ‘0,’ the next 2028 summed multiplications to the classification of a ‘1,’ and so on.

Quantization

 This model has over 20,410 parameters. If stored in their base format of float32, this

corresponds to well over 81KB, just for the model alone. Additionally, using float32 requires

difficult-to-implement floating-point arithmetic, which we hoped to avoid. For MNIST, these

model weights do not require a full 32-bits of precision. There are two main data types of

quantization, float16 and int8 (Quantization). Float 16 simply removes the extra 16-bits of

precision and reduces the memory usage by 2x, but still relies on floating-point arithmetic. Int8

on the other hand, not only reduces the memory by 4x compared to float32, but also allows our

model to process integer arithmetic. As such, we elected to explore quantizing the model to int8.

We quantized the MNIST model using TensorFlow Lite with Keras 3. This interpreter

was verified to have the same accuracy as the full precision model at 97.87% (compared to

97.85% for the full precision). Further, we exported the weights for each layer as a series of

two’s complement hex numbers to be stored directly on-chip within Verilog modules.

When interacting with quantized inputs, weights, and outputs, scale factors and zero

pointers are crucial. That is, when converting real value x to quantized value q, one must apply

the relation for scale S and zero point z. The inverse relation is 𝑞 = 𝑟𝑜𝑢𝑛𝑑(𝑥
𝑆) + 𝑧

. These factors are present in int8 quantization, not float16 quantization, as 𝑥 = 𝑆 × (𝑥
𝑞

− 𝑍)

7

int8 only has 256 values to encode information. As a result, scale and zero-point factors are

added to relatively adjust the impact of various features and layers across the model.

For our model, the following is a table of scale factors and zero points, applied for layer

inputs, weights, and biases. Note, the zero point on the Conv2D input layer was applied as a

ternary operator: with inputs 0 and 1, the zero point for 0 was simply -128, and for 1, 1/0.00392 -

128 is approximately 127. This explains the -128/127 relation seen in Figure 1.

Layer Type Scale Zero Point

Conv2D Input 0.00392 -128

Conv2D Weight 0.01033 0

Conv2D Bias 0.000041 0

Dense Input 0.198817 44

Dense Weight 0.005921 0

Dense Bias 0.000068 0

Output Output 0.003906 -128

For the model, int8 weights, inputs, and biases were fed into each layer. Accumulations,

done with partial multipliers and adders, were performed in int32, to ensure the model could

handle large partial sums without going over. Following the conclusion of a given sum, the int32

accumulation was re-quantized back down to int8 with the scale relation , where the 𝑀 = 𝑤·𝑥
𝑦

weight scale factor was multiplied by the ratio of the input and output scale factors. Because

these scale factors were small, irrational decimals, they were approximated closely with bitshifts.

Focusing on the Conv2D layer as an example, . By 𝑀 = 0.01033×0.00392
0.003906 = 0. 01037

8

approximating this scale factor with a bit shift of 10 and a multiplier of 11,

, which is a difference of only 3.56%. This error can be absorbed by 2−10 × 11 = 0. 01074

other layers, and floating point arithmetic can be completely avoided in our implementation.

9

General System Architecture / Associated Files Overview

Software File Definitions

10

Userspace Application: user.c

Kernel Driver: control.c

Header Interface for user.c and control.c: control.h

Hardware File Definitions

11

Top-Level Module: top

We implemented a top level module that pretty much was an Avalon memory mapped agent.

This was a very similar design to lab 3 and enabled communication using the available bits on

the Avalon bus for simple and efficient communication between the software and hardware

components.

Memory Modules: image_mem, data_mem, etc.

We had a series of memory modules to store key data such as the weight memory and the bias

memory. We also instantiated multiple memory modules for partially computed values. We

would store the values of the pooling layer in an on chip RAM whilst we waited for the 12 filters

to finish convolving and then we stored the final dense layer outputs on board an on chip RAM

to give the software a memory to access the data from.

Conv_weights_mem = 108 x 8

Conv_bias_mem = 10 x 8

Dense_weights_mem = 2028 x 8

Dense_weights_bias = 10 x 8

Control Unit (with FSM):

The control unit was implemented as an FSM with 6 different states to trigger different periods

of operation in the model. We initially started with a pre load state where we remained till the

image data was loaded and we received a signal from the software that this was complete.

Following this we triggered into a compute state that ran the convolutions for the first filter set.

We then had an offset state that last for a single cycle but was used to increment the weight

address values so we could read in the next state. This was repeated consistently till we had

12

C/C++

completed all 12 filters worth of convolutions. After this we were triggered into a paused state

and the next state was the dense state. We had been storing the outputs of the pooling layer in an

on chip RAM and we then fed this into the Dense layer to perform the massive dot product over

a series of cycles. At the end of this, and once all 10 dot products were computed we shifted into

a done cycle and awaited the software sending an address so we could read the final outputs out

to software. All internal calculations were computed in int32 and going being layers we applied

reqauntization scaling factors and zero point values

Control Unit Interface:

input logic clock,
input logic reset,
 //----------- image data ----------------------
input logic image_load_done,
input logic image_data,
input logic image_write_en,
input logic [9:0] img_wr_addr,
input logic [3:0] dense_address,
output logic signed [31:0] dense_output,
output logic dense_done,

// ------------ conv -> Pool handshake debug
output logic conv_valid_out, // valid signal to pool layer
output logic signed [31:0] mac_out, // convolution output to the pool layer
output logic pool_valid_out,
output logic signed [7:0] pooled_out,
output logic [16:0] counter_dbg

Convolution unit:

This unit was fed in a single pixel every clock cycle and using a rotating line buffer architecture

we were able to parallelize the computation of the convolutions. In essence, we utilized a case

statement to decide which row of our 4 row buffer are being written to. Each line buffer contains

28, 8-bit values that correspond to a single row. When a row is being written to, the other 3 rows

13

C/C++

C/C++

are being read from a pixel at a time. This enabled us to set up a 3x3 window and perform

multiple multiplications at the same time. It also enabled We then utilized an adder tree to reduce

the computations required in a single clock cycle and thus increase our Fmax. We then passed on

the calculated mac_out signal to the pooling unit directly instead of storing to minimize our

memory utilization.

input logic clock,
input logic reset,
input logic data_valid_in,
input logic [WORD-1:0] pixel_data_in,
input logic [ADDR_W-1:0] hcount_in,
input logic signed [7:0] weight_in,
input logic weight_en,
input logic pool_valid,
input logic signed [7:0] bias,

output logic signed [31:0] mac_out,
output logic [ADDR_W-1:0] hcount,
output logic signed [7:0] mem0_out [0:HOR-1],
output logic signed [7:0] mem1_out [0:HOR-1],
output logic signed [7:0] mem2_out [0:HOR-1],
output logic signed [7:0] mem3_out [0:HOR-1],
output logic signed [7:0] top_line_out [0:2],
output logic signed [7:0] mid_line_out [0:2],
output logic signed [7:0] bot_line_out [0:2]

Line buffer method:

valid <= data_valid_in;
 hcount_out <= hcount_in;
 if (data_valid_in) begin
 /// write incoming pixel into current memory
 case (current_write)
 2'd0 : mem0[hcount_in] <= pixel_data_in;
 2'd1 : mem1[hcount_in] <= pixel_data_in;
 2'd2 : mem2[hcount_in] <= pixel_data_in;

14

 2'd3 : mem3[hcount_in] <= pixel_data_in;
 default: mem0[hcount_in] <= 0;
 endcase
 end
 ///// reading values from the array
 unique case (current_write +2'd3)
 2'd0 : out0 <= mem0[hcount_in];
 2'd1 : out0 <= mem1[hcount_in];
 2'd2 : out0 <= mem2[hcount_in];
 2'd3 : out0 <= mem3[hcount_in];
 default: out0 <= 0;
 endcase

 unique case (current_write +2'd2)
 2'd0 : out1 <= mem0[hcount_in];
 2'd1 : out1 <= mem1[hcount_in];
 2'd2 : out1 <= mem2[hcount_in];
 2'd3 : out1 <= mem3[hcount_in];
 default: out1 <= 0;
 endcase

 unique case (current_write +2'd1)
 2'd0 : out2 <= mem0[hcount_in];
 2'd1 : out2 <= mem1[hcount_in];
 2'd2 : out2 <= mem2[hcount_in];
 2'd3 : out2 <= mem3[hcount_in];
 default: out2 <= 0;
 endcase

 if ((hcount_in == 27)) begin
 current_write <= current_write + 1'd1;
 end

15

Convolution Computation, Partial Adders Over 5 Cycles:

Pooling Unit:

The pooling unit was fed a single convolution output per cycle and this utilized a similar line

buffer micro architecture as the convolution unit. This helped us parallelize the comparisons

need to perform max pooling and also through the implementation of a comparison tree we were

able to greatly increase our Fmax. We also implemented the requantization scaling factor and

zero points at the end of this unit instead of the pooling unit as we were computing in int32

internally and need to output to the dense layer in int8. The scaling factor was implemented as a

bit shift and multiplication and enabled us to scale the values we got back down to their correct

range.

Pooling Interface:

16

Max pooling logic with scaling quantization (bit shift & multiply):

The Dense Unit:

This was a simple multiply accumulate module that was fed a weight and data point on each

clock cycle. Again all the calculations were done in int32 internally. This took longer to compute

but was a simpler microarchitecture. At the end of this calculation on cycle 2029, the scaling

factors and zero point for this layer were implemented in order to scale the values back into an

int8 range. This enables us to have readable values in the output and makes computation outputs

more easily interpretable.

17

Dense Computation Logic:

18

System Level Block Diagram

System Level Dataflow

This is a high level block diagram of the system we hope to implement. As you can see in

the figure below we will have a HW/SW interface on the FPGA that will enable our hardware to

communicate with our control C program on the local terminal:

As you can see above the overarching system level architecture is relatively simple to

implement. The hardware side of the system consists of 3 major components. There will be N

image RAMs for us to store the dataset images. As the MNIST dataset consists of 28 x 28 pixel

images, the RAMs will be just under half a kilobyte in size. There will also potentially be a bias

memory implemented. A bias can be defined as a constant which is added to the product of

features and weights. It is used to offset the result and it helps the models to shift the activation

19

function towards the positive or negative side.1 The main component of the hardware design

would be the computation module. Our computation module would have the ability to perform a

convolution layer, dense layer, max pooling layer, average pooling layer, spare layer and a series

of activation functions. Initially, the focus would be on getting one set of these layers working

but the final aim would be to have all of these working and interchangeable depending on the c

file to configure the module.

The software side will have a C program that will configure the hardware side of the

design depending on the neural network being implemented.

1 (“Importance of Neural Network Bias and How to Add It”)

20

Computation Module

The computational module is the main block on the FPGA side in our NN accelerator

design. In order to enable high speed inference on the FPGA, we would design a module that is

controlled by the on board software in real time. Initially, we will implement a computational

module that performs all necessary computations for a CNN. However we hope to expand this

design to include a multitude of different types of layer computations such as dense layer, sparse

layer etc. This will enable us to take a more generic neural network design and accelerate it using

the hardware. We also hope to take advantage of parallelism during this process so we will have

multiple pipelines running simultaneously within this module. The microarchitecture for the

computation module can be seen below:

21

We want to be able to run inference on multiple images at a time, hence why, as you can

see above we hope to implement 2 pipelines. There will be a control unit (CU) that will dictate

the state of the pipelines above. This will be the part that interfaces with the C program and as

soon as the registers and memory blocks are loaded with the correct information will begin to

drive the pipeline.

Initially, CU supplies the address from which the Image Memory (IMEM), Weight

Memory (WMEM) and the Bias Registers (BREG) should be read from. The computation blocks

take these inputs and perform a multiply and accumulate on the values. After 9 cycles (9 due to a

3 x 3 convolutional window), the computation module performs the required activation function

on the value and writes it to the Data Memory (DMEM). This continues until we have performed

the necessary convolutions on the entire image. This would be considered the first layer in a

typical neural network. Instead of using the IMEM now we would utilize a mux and select the

DMEM as the new input data source. Now we would perform the new calculations with the

DMEM input data, new bias value and new weights from the WMEM. This would represent the

second layer in our neural network. One key design feature of the computation block would be

that it is both capable of performing convolution layer computations as well as pooling layer

computations. This will be occurring within the same block.

22

Computation Block

The computation block is where we actually perform convolutions, pooling layer

calculations and implement an activation function. The microarchitecture of the computation

block can be described as a rotating series of line buffers that feed into a convolution module.

Effectively, each line buffer stores the value of each row. As we are using a 3 x 3 kernel, we need

3 MEM arrays for the current calculations and 1 for the next row being loaded. On each clock

cycle, we can push the pixel values of the first 3 rows into our convolution kernel. At the same

time we will feed the values of the next row into the 4th MEM array. When the 4th MEM array

is full and the 3 MEM arrays for the current calculation have been read all the way, the following

happens:

- The 4th MEM array becomes the bottom row in the convolution kernel.

- The oldest MEM array so MEM array 1, now becomes the new loading MEM array as

the information in this MEM array is no longer needed.

MEM array 1 CALCULATIONS

MEM array 2

MEM array 3

MEM array 4 LOADING ROW 4

NEXT STATE

MEM array 2 CALCULATIONS

MEM array 3

MEM array 4

MEM array 1 LOADING ROW 5

23

Memory Resource Allocation

Memory Resource Requirements and Module Roles

The CNN accelerator design uses six total memory modules—two each for storing image data,

convolutional weights (with bias parameters), and intermediate calculation results (data).

Duplicating these modules allows us to enable dual channel processing // parallel computations

throughout the pipeline.

Image Memory Modules (×1):

 There is one 28 × 28 pixel MNIST image in every module. The MNIST images are

typically in 8-bit grayscale, but in our design, we use them as binary values of either 0 or 1 but

use 8 bits for each pixel to maintain normal resolution as defined by the data set. Such memories

store the main input data for convolution operations as well as to perform secondary operations

in processing.

● Per Module:

○ MNIST image size = 28 × 28 pixels = 784 pixels

○ Pixel bit length = 8 bits normally, 1 bit quantized in our design

○ Memory per module = 784 pixels × 1 bits = 784 bits (which equals 98 bytes)

24

Weight Memory Modules (×2):

 These modules store weights needed for a given layer, along with associated biases. For

different layers these modules must be different sizes, but they store a collection of int8 weights

that correspond to the product of the input and output channels for Dense layers, or their kernel

shape, input channels, and filters/output shape for convolutional layers. Each output channel also

has a given bias. All weights and biases are stored in int8 data types.

For convolution model (Chollet):

Layer Kernel
Shape

in_channel
s

Filters /
out_channels

Weights Weight
Size

Bias Count
(1/filter)

Conv2D #1 (3x3) 1 12 108 0.108KB 12B

Pool (2x2) 12

Dense – 2028 10 20280 20.28KB 10B

Total 20.388KB 22B

To calculate number of weights = kernel shape * in_channels * filters

Data Memory Modules (×2):

 Intermediate results and final outputs of CNN computations are stored in data memory

modules. They offer direct access to computed values to be passed to subsequent stages of

processing or to be stored for subsequent post-processing. With their dual banks of data memory,

the design supports concurrent streams of processing, increasing overall throughput and

efficiency of the accelerator. For memory constraints, it is important to consider these too on a

per-layer basis, mainly focused on the product of the output sizes with the int8 data type for the

weights.

Total Memory Considerations/Requirements:

● Image Memory = 196 bytes

25

● Weight + Bias Memory = 16.288KB

● Data Memory (assuming pipelined worst case) = 2KB

● Total Memory Req = 18.4KB

Hence, we can see that the total system memory requirements for the computationally

challenging convolutional network are acceptable at 18.4KB, leaving a significant amount of

memory for other processing tasks within the system design. For the simple to compute dense

layer ‘simple’ model, we can batch weights in sequentially for a dense layer much more easily

than a convolutional layer, allowing us to not store all weights in memory at the same time.

26

Hardware/Software Interfaces

3 Pillars of Communication

One can think of the interface as communication across 3 different realms: the userspace (user.c),

kernel space (control.c, control.h), and hardware registers. The point of contact with the

hardware is the top-level verilog module (top.sv) with signals corresponding to those of an

Avalon memory slave (making initialization and wiring in Platform Designer much easier). This

module then initializes instances of the other hardware components.

The registers are accessed by the driver module through iowrite32() and ioread32()

calls (which take in the register addresses as a parameter), and each call has their own opcode

corresponding to its purpose; this will be further discussed in the “Communication Protocol”

section. The userspace then utilizes said functions defined in the driver module to make these

iowrite/read calls using ioctl() function calls, which take in the characteristic opcode as a

parameter. For data transfer between the userspace and driver files, the copy_from_user() and

copy_to_user() functions–which take in data buffer addresses for the information being

27

http://top.sv

sent/received from hardware as parameters–are called within the ioctl() function handler of

the driver.

Register Map

Below is the register map that the software interprets as registers in what is essentially the FPGA

fabric. All registers are 32 bits wide, even if not all the bits hold valuable information (we

consistently call iowrite32() or ioread32()). The first register, at the Avalon register

address with offset 0, is used to carry the constructed word images. The following 10 registers, at

offsets 1-10, are used to carry the final dense classification outputs, ie. the probability of each

digit in sequential order (0-9). Finally, the last register is used by the hardware to signal the

userspace through the driver that it is ready to begin sending the aforementioned dense output

signals through a ‘go’ bit.

Register #
(Offset / Addr)

Function Code Definitions

0 Constructed Image Word #define IMAGE(x) (x)

1 Dense Classification 0 #define PROB_0(x) ((x)+4)

28

2 Dense Classification 1 #define PROB_1(x) ((x)+8)

3 Dense Classification 2 #define PROB_2(x) ((x)+12)

4 Dense Classification 3 #define PROB_3(x) ((x)+16)

5 Dense Classification 4 #define PROB_4(x) ((x)+20)

……. Dense Classifications 5-7

10 Dense Classification 8 #define PROB_8(x) ((x)+36)

11 Dense Classification 9 #define PROB_9(x) ((x)+40)

…… [EMPTY]

15 Dense Done Bit DENSE_DONE_F(x) ((x)+60)

Communication Protocol

Throughout the processing of one image by the CNN, 4 main occurrences of data transfer

happen, each represented and executed by an ioctl() call:

1. ioctl(control_fd, CONTROL_WRITE_IMAGE, &vla): Software is first used to load

in the image (stored as a .mem file) into a buffer, append other necessary information to

the bit to form a 12 bit word (pixel bit address, “last image pixel” flag), and then send the

word to the hardware side which will then send it to the convolver layer.

a. This is an iowrite32() call under the hood at offset 0:

29

b. Each pixel of the image is 1 bit, being either black or white

c. On the last pixel, the “image load done bit” is set high to flag the hardware to start

running the convolution layer

2. ioctl(control_fd, CONTROL_READ_DENSE_DONE, &vla): After sending the image

data, the software continuously polls for the flag indicating that the hardware is done with

its calculations (ie. when the dense layer is finished)

a. This is an ioread32() call done on the register at offset 15:

3. ioctl(control_fd, CONTROL_TRIGGER_DENSE_ADDR, &vla): Once the flag is seen,

software then sends an ioread32() call on each of the “Dense Classification” registers

(offests 1-10) in order to let hardware know where to send the dense layer outputs

a. This is an ioread32() call done on the registers at offsets 1-10, but since we

are simply using this call as a “trigger” (to let hardware know where to place the

data), we don’t care about the register contents and hence the readdata is not

stored in a buffer:

30

4. ioctl(control_fd, CONTROL_TRIGGER_DENSE_ADDR, &vla): Finally, after

hardware inputs the 10 dense results in their corresponding registers (done 1 clock cycle

after receiving the previous ioread32() call), software does another ioread32()

sweep across registers at offsets 1-10 to grab the CNN results and print them out to the

user

a. This is another ioread32() call done on the registers at offsets 1-10, but this

time the values are stored in a buffer to be sent back up to userspace

Example function path from image data in userspace to hardware register:

user.c:

1. Call load_image_data() in main()

31

2. load_image_data() definition in user.c

3. ioctl() handler in control.c

4. iowrite32() to respective register in control.c

32

Testing the Accelerator

There are two main levels of verification for this accelerator:

1. Functionality: comparing the accuracy of the accelerated system when performed on a

baseline laptop system.

2. Performance: comparing the speedup of the system compared to performing all

operations in software on the same system.

The functionality benchmark is essential. By finding which value of the final Dense

layer is the maximum value, we can determine which of 10 digits the model predicts a given

image to represent. This can be checked against the label of that image: if the prediction matches

the label, then the model is correct. Otherwise, the model is incorrect. Accuracy is defined as the

number of correct tests divided by the total number of tests. For this system, the accuracy should

not just be strong, but should match a laptop system’s accuracy for the same model: this will

ensure the accelerator system is performing the proper tasks.

The performance benchmark should be measured at minimum on the De1-SoC in a

vacuum, evaluating how quickly the model runs on this system. Ideally, this verification would

include a direct comparison to a model carrying out all computations on the De1-SoC in C

software, and compare the speedup.

In regards, to functionality and performance, we were able to successfully demonstrate the

following:

● Bit-packed and processed image data loading.

33

● Successful translation of data across hardware and software through kernel/header

software.

● Status polling for hardware completion flags and FSM for state.

● Retrieval of final 32-bit classification probabilities for each possible digit.

● Total Operational Time: Ranges from 1.01-1.07 milliseconds @ roughly 30% resource

utilization.

●

34

Bibliography

“Importance of Neural Network Bias and How to Add It.” Turing,

https://www.turing.com/kb/necessity-of-bias-in-neural-networks#what-is-bias-in-a-neural

-network? Accessed 15 April 2025.

Chollet, François. Keras Documentation: Simple MNIST Convnet. 19 June 2015,

https://keras.io/examples/vision/mnist_convnet/.

Kizheppatt, Vipin. Neural Networks on FPGA: Part 2: Designing a Neuron. 2021. Youtube,

https://www.youtube.com/watch?v=a2wOjxRf_xg&t=488s. Accessed 15 April 2025.

“MNIST database.” Wikipedia, https://en.wikipedia.org/wiki/MNIST_database. Accessed 15

April 2025.

Patel, Prathmesh, et al. Acceleration of Digit Classification Using Custom CNN on a SoC FPGA.

2024.

“Training a Neural Network on MNIST with Keras | TensorFlow Datasets.” TensorFlow, 14

December 2024, https://www.tensorflow.org/datasets/keras_example.

Quantization. https://huggingface.co/docs/optimum/en/concept_guides/quantization. Accessed

15 May 2025.

35

https://keras.io/examples/vision/mnist_convnet/
https://www.tensorflow.org/datasets/keras_example

	
	
	Introduction
	
	
	
	
	Problem Identification & Dataset
	Model Architecture
	Quantization

	General System Architecture / Associated Files Overview
	Software File Definitions
	Userspace Application: user.c​Kernel Driver: control.c​Header Interface for user.c and control.c: control.h

	Hardware File Definitions
	Top-Level Module: top
	We implemented a top level module that pretty much was an Avalon memory mapped agent. This was a very similar design to lab 3 and enabled communication using the available bits on the Avalon bus for simple and efficient communication between the software and hardware components.​Memory Modules: image_mem, data_mem, etc.
	Control Unit (with FSM):
	Convolution unit:
	Convolution Computation, Partial Adders Over 5 Cycles:
	Pooling Unit:
	The Dense Unit:

	
	System Level Block Diagram
	System Level Dataflow

	
	Computation Module
	
	
	Computation Block

	Memory Resource Allocation
	
	Hardware/Software Interfaces
	Testing the Accelerator
	Bibliography

