
CNN Accelerator for Gesture Recognition
on DE1-SoC FPGA

CSEE 4840 Embedded System

Presenters:
Yangfan Wang (yw4415)
Fengze Zhong (fz2393)
Xincheng Yu (xy2654)

May 14, 2025

Project Introduction

Target: Use FPGA to accelerate the inference process of a CNN model

Figure 1: 10 Gestures for recognition

CNN Architecture

The CNN contains 4 convolutional layers, 3 max pooling layers and 2 fully connected layers

Figure 2: CNN Architecture

CNN Architecture

Figure 3: CNN Architecture (detailed)

Golden Model

Dataset:

Sign Language Digits Dataset, which contains 2,180 color images of hand gestures representing digits from 0 to 9.

Platform:

PyTorch

Data Augmentation Techniques:

Random rotation, Center cropping, and

Adjustments to brightness and contrast

Data Split:

80% for training and 20% for validation.

Accuracy:

93% on the original dataset

Figure 4: Data Augmentation Examples

System Architecture

The system we build contains the software control and the hardware acceleration.

Figure 5: FPGA and HPS Block Diagram

● The software

side will be

running on the

HPS Linux mainly

for input process

and CNN flow

control.

● The hardware side will

be purely for storage

and computation

including the kernel

convolution, max

pooling, ReLU

activation and fully

connected layer.

Software

● With an image pending for recognition, the software will firstly downsample, resize it to 32x32 and

do zero padding.

● Then it will follow the structure of the CNN, load weights and biases from files to the hardware

according to the current layer.

Figure 6: Example of 32x32 matrix zero padding at the input

Software

● compute_network():

○ Main function that runs the network

● run_conv():

○ Set convolution layer parameters

○ Allocate memory for output

● run_fc():

○ Set fully connected layer parameters

○ Allocate memory for output

● memory_ioctl()

○ CONV_WRITE & FC_WRITE:

■ copy_from_user: configuration

■ copy_from_user: intput_data, weight, bias

■ copy_to_user: output_data

Hardware Top Level

Figure 7: State machine Diagram

Hardware Top Level

Convolution

conv_weight_rd_addr:

9 * curr_src_chan + 9 * num_src_chans * curr_dst_chan + curr_kernel_id

conv_data_rd_addr:

curr_pixel_pos + num_cols * num_rows * curr_src_chan

conv_output_wr_addr:

curr_output_y * (num_cols - 'd2) + curr_output_x + curr_dst_chan * (num_cols - 'd2) * (num_rows - 'd2)

Initial Weight Load

Hardware Top Level

Fully Connected

fc_weight_rd_addr:

curr_fc_w_row * num_dst_chans + curr_fc_w_col

fc_data_rd_addr:

curr_fc_w_row

fc_wr_addr:

curr_fc_w_col

Hardware Component

Pixel Position:

curr_kernel_pos - num_cols - ‘d1
curr_kernel_pos - num_cols
curr_kernel_pos - num_cols + ‘d1
curr_kernel_pos - ‘d1
curr_kernel_pos
curr_kernel_pos + ‘d1
curr_kernel_pos + num_cols - ‘d1
curr_kernel_pos + num_cols
curr_kernel_pos + num_cols + ‘d1;

Address Computation

Hardware Component

pool_rd_addr:

(curr_pool_size * pool_size) + curr_pool_stride_y) * (num_cols - ‘d2) + (curr_pool_x * pool_size +

curr_pool_stride_x + curr_dst_chan * (num_cols - ‘d2) * (num_rows - ‘d2)

pool_wr_addr:

(curr_pool_y) * (num_cols - ‘d2) / pool_size + (curr_pool_x)

Address Computation

Hardware Component

Figure 8: MAC Unit

HW/SW Interface

Programmable Registers

0 num_src_chans
1 num_dst_chans
2 num_cols
3 num_rows
4 fc
5 do_pool
6 pool_size
7 pool_stride

8 data_starting_addr[15:0]
9 data_starting_addr[31:16]
10 weight_starting_addr[15:0]
11 weight_starting_addr[31:16]
12 bias_starting_addr[15:0]
13 bias_starting_addr[31:16]
14 output_starting_addr[15:0]
15 output_starting_addr[31:16]
16 start

This is how software tells hardware what to do and receive feedback from hardware

Read to any address will receive the LAYER_DONE signal from HW

HW/SW Interface

Memory Space

Software does the zero padding for each layer

Data

Weight

Bias

Output

Verification

● Implemented Python Codes

○ Fully Connected Layer

○ Convolution

○ Pooling

Generating Tests Case and Expected Output

Resource Budgets

● The main constraint for this project is the BRAM needed to store the source data, weight, bias and
output. All the data involved will be represented in Q8.8 fixed point using 2 bytes.

● BRAM size must be larger than the maximum layer memory requirement

● BRAM is set to 340 KB

Table 1. memory requirement of each layer

Resource Budgets

Fmax ~ 45MHz

Thanks for Listening

Any Questions?

May 14, 2025

