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Overview  

EAN-13 Background 
In the United States, EAN-13 barcodes are commonly used on retail goods and books. 
Retail goods are marked as described by the UPC-A standard with a leading “0” 
followed by a 12 digit identifier. Books use the ISBN standard which is a subset of the 
GTIN standard, where the country code is marked as 978 or 979 and commonly 
referred to as “Bookland”.  
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Each EAN-13 barcode consists of: 

● A 3-digit GS1 prefix (country or organization code) 
● A manufacturer code 
● A product code 
● A checksum digit, which is calculated using a modulo-10 algorithm for error 

detection. 

EAN-13 is designed for optical scanning, and the encoded information is not stored as 
characters but as a sequence of bar widths and spacings, with strict rules for start, 
middle, and end guards, and left/right digit parity patterns. This makes it ideal for 
real-time decoding from images or video frames, such as in our system. Our project 
leverages this predictable encoding structure to decode bar widths from a single 
scanline of a barcode image, allowing us to extract the 13-digit GTIN from visual data 
captured by an OV7670 camera. This approach mimics the working principle of physical 
barcode scanners and offers a hands-on demonstration of digital image processing, 
signal sampling, and hardware/software co-design. 

Our Approach 
In our group's final project for Embedded Systems, we made a barcode scanner using 
the OV7670 camera module. Our system reads UPC-A barcodes using the camera and 
displays 12-digit UPC (Universal Product Code) at the output of the barcode scanning 
algorithm code. EAN-12 is a barcode symbology defined by GS1 US, the American 
branch (🦅) of the global GS1 organization responsible for developing and maintaining 
barcode standards. Outside of the United States, there is also an international 13-digit 
barcode standard maintained by GS1.  

Each EAN-13 barcode consists of: 

● A 3-digit GS1 prefix (country or organization code) 
● A manufacturer code 
● A product code 
● A checksum digit, which is calculated using a modulo-10 algorithm for error 

detection. 

 
Due to the limited availability of international products, our group specified our data 
processing for the 12 digit barcode, but the system could be easily adapted to account 
for the 13 digit barcode scanner. This project implements a hybrid hardware-software 
system for decoding EAN-13 barcodes, using the OV7670 camera and the DE1-SoC 
development board. The system leverages both the programmable logic (FPGA) and 
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the integrated Hard Processor System (HPS) on the Cyclone V SoC. After data is 
received and processed on the FPGA, individual pixels are sent to the algorithm, 
implemented in C++, which decodes the data into the original barcode as taken by the 
camera.  
 

Hardware 
This project requires extensive hardware and software development to fully implement. 
At a high level, the camera takes a photo of the barcode and turns each of the pixels it 
receives into 2 bytes of data, in 565 Red-Green-Blue format. The camera frame is 480 
rows long and 640 pixels (1280 bytes) wide. After the shutter of the camera is pressed, 
a verilog module applies its logic to the several output waveforms of the camera until it 
passes the middle row of data, theoretically the most informationally robust, to a FIFO. 
The FIFO passes the information to an Avalon bus that allows the data bits to be read 
by the device driver, and finally processed by the algorithm. We chose this project 
because of the intensive hardware-software interface development needed and unique 
challenge of processing data collected externally to the software. It offers a hands-on 
demonstration of digital image processing, signal sampling, and hardware/software 
co-design. 
 

Software & Design Justification  

We implemented a custom device driver that enables the transfer of RGB color data 
from the FPGA to the HPS. Specifically, the driver exposes the RGB values of each 
pixel in the middle row of the captured image frame. We offloaded as much image 
processing as possible to software running on the HPS for the following reasons: 

1) Performing most of the data processing on software allows for faster iteration. 
Developing and testing processing algorithms in software allows for significantly 
faster iteration. Compiling software changes typically takes under a minute, while 
recompiling FPGA fabric can take 15 minutes or more. 

2) Software also allows for greater flexibility. Software provides more adaptability to 
changing conditions. For example, if ambient lighting changes or we need to 
fine-tune denoising, thresholding, or filtering parameters, we can update the 
software without requiring time-consuming hardware recompilation. 

This hybrid approach enables us to leverage the FPGA for efficient data acquisition 
while retaining the flexibility and rapid development cycle of software-based processing. 
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Block Diagram  

 

OV7670 Camera Module 

 
Interfacing OV7670 camera 

 
- Module Specification 
- Chip Specification 
- SCCB Protocol Specification 

To capture barcode image data, our project uses the OV7670, a compact, low-power 
CMOS image sensor that outputs 8-bit VGA video data at up to 30 frames per second. It 
communicates with a host device through a semi-proprietary Serial Camera Control Bus 
(SCCB) for configuration, similar to I2C. The camera outputs formatted image data in 
RGB565 format, which requires assembling two 8-bit data values per pixel using the 
PCLK signal. The timing and data synchronization rely on HREF (line valid) and VSYNC 
(frame sync) signals, which the camera_interface.sv verilog module on the programmed 
FPGA will monitor to capture one full horizontal row of pixel data per barcode scan. 
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Ideally, the captured row is the center row to allow for the most robust receiving of data. 
The synchronization of the signals PCLK, VSYNC, HREF, and DATA[7:0] are shown in 
the screenshot below 1:  

 

 

Additionally, the pinout of the camera is shown below:  

1 OV7670_DS (1.4).fm 
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We reviewed the OV7670 datasheet: (OV7670 Camera Module Datasheet (Rev. C, 
PDF)), which outlines key capabilities such as exposure control, gamma correction, 
white balance, color saturation, and hue control, all configurable through SCCB. These 
settings allow us to fine-tune the image quality if needed, especially for robust 
performance under varied lighting conditions — which is critical for accurate barcode 
decoding. After the SCCB protocol was set up and the signal synchronization 
understood, camera_interface.sv was implemented to allow for data transmission from 
the camera. The camera_interface.sv code is discussed in the next section. 

Camera Interface (camera_interface.sv) 
At a high level, the FPGA fabric is designed to perform the following functionality:  

1) Capture button of camera being pressed. 
When an outside user presses the button to the camera, a flag is set 
signaling to the FPGA to prepare to capture the data collected from the 
photo.  

2) Read the middle row of pixels.  
For the duration of the next frame coming into the FPGA fabric, wait for 
the middle row of pixels. 

3) Save the middle row of pixels. 
Upon determining the end of the middle row, set the flag back to its 
original status, indicating that the FPGA should not save the remainder of 
the incoming data. 

4) Interface with the HPS. 
A mutex or handshake signal may be used to pause the HPS from reading 
shared memory during capture, ensuring data integrity. Extract one row of 
pixels when a button is pressed. The HPS can then safely access the 
captured row for further software-side decoding of the barcode. 
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The camera_interface.sv module is engineered to interface with the OV7670 camera, 
facilitating the capture and processing of pixel data for subsequent digital applications. It 
employs a Mealy-style finite state machine (FSM) comprising four distinct states: 
RESET, SHUTTER, WRITE, and BLOCK. 

Upon reset, which is triggered by the shutter, the FSM initializes counters and prepares 
the system for data acquisition. The camera is continuously transmitting data, and each 
frame is barred on either side of the data transmission by VSYNC barring high for 4704 
clk cycles. We are able to determine with specificity that VSYNC bars high for 4704 clk 
cycles by the timing diagram which shows VSYNC high for three .  𝑡

𝐿𝐼𝑁𝐸

 𝑁× 𝑡
𝐶𝐿𝐾

= (3 × 𝑡
𝐿𝐼𝑁𝐸

) ×
784×𝑡

𝑃

𝑡
𝐿𝐼𝑁𝐸

×  
2×𝑡

𝐶𝐿𝐾

𝑡
𝑃

= 4704 × 𝑡
𝐶𝐿𝐾

The timing diagram for the output of the camera is incredibly detailed, which allowed us 
to come to similarly detailed understanding of the other camera output signals. After the 
shutter is pressed, the verilog module waits for the next rising edge of VSYNC, which 
transitions the FSM into the SHUTTER state. In the SHUTTER state, it monitors the 
HREF signal to increment column and row counters, determining the position within the 
frame. When the middle row (row 239) is reached, the FSM transitions to the WRITE 
state, where it begins assembling 32-bit words from consecutive 8-bit pixel values. 
These words are constructed over four clock cycles and output via wide_bit_out[32:0]. 
Although the data arrives from the camera in 8 bit chunks, it needs to leave the 
camera_interface.sv module in 32 bit chunks because the FIFO requires a 32 bit input. 
It would be possible to pad the 24 MSB of the FIFO input with zeros and only feed in 8 
bits at a time, but doing so would be wasteful and it is a more elegant solution to deliver 
the data to the FIFO in 32 bit chunks. A fifo_enable signal is asserted to indicate the 
availability of valid data for downstream processing every four clock cycles, or every 
time four 8-bit packets of camera data have been packaged into a 32 bit chunk. Once 
the desired data is captured and transmitted to the FIFO, the FSM enters the BLOCK 
state, blocking any other data transmission until another valid shutter is captured.  

To manage the pixel data, the module instantiates eight flip flop submodules, each 
acting as a D-type flip-flop for one bit of the 8-bit data bus (d[7:0]). These flip-flops are 
synchronized with the pixel clock and controlled by the href signal, ensuring accurate 
data capture.  

Additionally, a debounce_better_version module processes the shutter_raw input to 
generate a clean shutter signal, mitigating the effects of mechanical switch bouncing. 
Debouncing the shutter signal is key to successful digital logic, as any bouncing in the 
shutter press could interfere with downstream logic. Our solution for shutter debouncing 
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is described below, and requires four verilog modules2:  
 

debounce_better_version.sv 
 
//fpga4student.com: FPGA projects, Verilog projects, VHDL projects 
// Verilog code for button debouncing on FPGA 
// debouncing module without creating another clock domain 
// by using clock enable signal  
module debounce_better_version(input pb_1,clk,output pb_out); 
wire slow_clk_en; 
wire Q1,Q2,Q2_bar,Q0; 
clock_enable u1(clk,slow_clk_en); 
 
my_dff_en d0(clk,slow_clk_en,pb_1,Q0); 
 
 
my_dff_en d1(clk,slow_clk_en,Q0,Q1); 
my_dff_en d2(clk,slow_clk_en,Q1,Q2); 
assign Q2_bar = ~Q2; 
//assign pb_out = Q1 & Q2_bar; 
assign pb_out = Q1 & Q2_bar & slow_clk_en; 
 
endmodule 

 
 

flipflop.sv 
 
//async reset flip flop module 
module flipflip(clk, rst, en, d, q); 
    input logic clk; 
    input logic rst;  
    input logic en; 
    input logic d; 
    output logic q; 
 
    always_ff@(posedge clk or posedge rst) begin 
        if (rst) 
            q <= 1'b0; 
        else if (en) begin 
            q <= d; 

2 Verilog code for debouncing buttons on FPGA - FPGA4student.com 
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        end 
    end 
endmodule 

 
 

clock_enable.sv 
 
// Slow clock enable for debouncing button  
module clock_enable(input Clk,output slow_clk_en); 
    reg [26:0]counter=0; 
    always @(posedge Clk_100M) 
    begin 
       counter <= (counter>=249999)?0:counter+1; 
    end 
 
    assign slow_clk_en = (counter == 249999)?1'b1:1'b0; 
endmodule 
*/ 
 
// Generates a 1-clock-cycle pulse every x clock cycles 
module clock_enable ( 
    input  logic clk, 
    output logic slow_clk_en 
); 
    reg [24:0] counter = 0; // 4-bit counter is enough for values 0–9 
    always_ff @(posedge clk) begin 
        if (counter == 25000000) 
            counter <= 0; 
        else 
            counter <= counter + 1; 
    end 
    assign slow_clk_en = (counter == 25000000); 
endmodule 

 
 

flipflip.sv 
 
//async reset flip flop module 
module flipflip(clk, rst, en, d, q); 
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    input logic clk; 
    input logic rst;  
    input logic en; 
    input logic d; 
    output logic q; 
 
    always_ff@(posedge clk or posedge rst) begin 
        if (rst) 
            q <= 1'b0; 
        else if (en) begin 
            q <= d; 
        end 
    end 
endmodule 

 
The timing diagram representing the functionality of the debouncing is also shown:  

 

Mechanical switches, such as the shutter button, are prone to signal bouncing, which 
can lead to multiple unintended triggers. To mitigate this, the module incorporates a 
debounce_better_version submodule that processes the raw shutter_raw input to 
generate a clean shutter signal. 

The debouncing mechanism operates by generating a slower clock enable signal 
(slow_clk_en) with a heavily unbalanced duty cycle, high for only one clock period and 
low for the remaining cycles. This design ensures that the likelihood of sampling the 
bouncing signal during its unstable phase is minimal. Once a stable high signal is 
detected during the slow_clk_en high phase, the shutter signal is latched and processed 
through additional flip-flops to produce a single-cycle pulse, synchronized with the main 
clock. 

For instance, assuming a 50 MHz main clock, the slow_clk_en can be configured to be 
high for one cycle every second (i.e., high for 1 cycle and low for 49,999,999 cycles). 
This configuration requires the user to press and hold the shutter button for at least one 
second to ensure reliable detection. 
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The camera_interface.sv module effectively captures and processes pixel data from a 
CMOS image sensor, organizing it into 32-bit words suitable for further digital 
processing or storage. Its design addresses key challenges, including synchronization 
of incoming data, efficient data aggregation for FIFO buffering, and reliable detection of 
mechanical shutter inputs through robust debouncing techniques. 

 

FIFO Avalon® -ST Sink to Avalon® -MM Read Agent 
After the camera_module.sv file, the data gets passed into a FIFO which is 

pre-configured by Platform Designer. Intel gives four different possible configurations for 
the FIFO, depending on if you want the input to be serial or memory mapped. If the 
interfaces should be serial, the interface is labeled to be either “ST Sinks” or “ST 
Source”. If the interface is memory mapped, the interface is labeled to be either “MM 
Read Agent” or “MM Write Agent”. For our implementation, we want the input of the 
FIFO to be a serial because the data is being continuously received from the camera 
and it needs to be stored in such a way that the output can be read in a calm and 
controlled fashion. The output of the FIFO, therefore, is memory mapped because we 
want control of reading data out of the FIFO. 

In this configuration, according to the Intel documentation, the only allowable 
interface width between the input and the output of the FIFO is 32-bit. After exiting the 
camera_interface.sv module, the 32-bit wide data is streamed through the Avalon-ST 
sink interface. The FIFO core performs endian conversion as necessary to align with the 
output interface protocol. As the input data is sunk into the FIFO, it gets read to memory 
mapped registers. The mapped registers remain in place until read enable configuration 
is set and the information can be read out of the FIFO. There are many configurable 
settings when generating the FIFO instance in Platform Designer including 
backpressure,  ready, valid, and wait request. The signal most pertinent to our project 
would be “backpressure” as it is the signal which notifies the interface on the output of 
the FIFO that the FIFO contains information. Although this signal could be helpful, our 
group chose to implement a timed inquiry to the FIFO to check for data instead of the 
backpressure pin. Therefore, our FIFO is rather bare bones. The diagram for the 
Sink-MM FIFO from the Intel data sheet is shown below.  
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The datasheet also includes helpful information about how the output of the FIFO can 
be interacted with. The use of separate register maps allows for flexibility in how each 
bus interacts with the FIFO, potentially enabling different data widths, access protocols, 
or control mechanisms. At a high level, there are two buses interacting with the FIFO, 
both with their own register map, meaning the base address of both buses can be 
considered zero.  
 
As shown in the Platform Designer GUI and documentation, the output buses for the 
data and status registers of the FIFO have specific locations and configurations. A 
screenshot of the fully connected Platform Designer hardware for our project is shown 
below3. The signal labeled “out_cpr” is six, 32 bit registers which are mapped to the 
following signals:  

 

 

3 24.2.4. Avalon® -ST Sink to Avalon® -MM Read Agent 
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As shown, the  lowest 6 bits of the base+1 register contain status signals about the 
FIFO MM output, bit one of which signals the EMPTY bit.  

 

 

 
 

From the EMPTY and DATA buses, data can be read out of the FIFO. Key to reading 
the data, however, is the device driver. The device driver will be discussed in detail in 
the next session.  

 Device Driver (camera.ko) 
The camera device driver is implemented as a Linux kernel module that interfaces with a 

scanline camera over an Avalon-MM FIFO interface. It exposes a character device 
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(/dev/camera) and provides two ioctl-based operations: CAMERA_READ_WORD, which returns 
a 32-bit word containing two packed RGB565 pixels, and CAMERA_FIFO_EMPTY, which 
reports whether the FIFO is currently empty. Internally, the driver maps the FIFO data register at 
offset 0x000 and the status register (i_status) at offset 0x004, where the EMPTY condition is 
indicated by bit 1. The driver uses the ioread32() interface to access hardware registers and 
translates low-level FIFO status into simple integer responses for userspace. By delegating 
polling and control logic to userspace, the driver maintains a lightweight, low-overhead design 
while enabling reliable pixel stream access for real-time barcode decoding applications. 

 
 

 

 Controller Loop 
The userspace controller, implemented in read_scanline.c, is responsible for retrieving a 
stream of RGB565 pixels from the camera driver and passing them to a barcode decoding 
routine. It opens the /dev/camera device and polls the FIFO by repeatedly invoking the 
CAMERA_FIFO_EMPTY ioctl until data becomes available. Once ready, the program reads 32-bit 
words from the FIFO using the CAMERA_READ_WORD ioctl. Each word contains two 16-bit 
RGB565 pixels, which are unpacked and stored in a structured array using the rgb565_t type. 
This struct uses bit fields to represent red, green, and blue components as uint8_t r:5, g:6, 
and b:5 respectively, matching the hardware pixel format. After collecting a complete scanline 
of 640 pixels, the controller calls process_barcode(), which decodes the image into a 
12-digit UPC-A code if possible. This modular design separates low-level polling and pixel 
unpacking from high-level barcode recognition, enabling clarity and reusability. 
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C/C++ 

 

 
This struct uses bit fields to represent red, green, and blue components as uint8_t r:5, g:6, 
and b:5 respectively, matching the hardware pixel format. After collecting a complete scanline 
of 640 pixels, the controller calls process_barcode(), which decodes the image into a 
12-digit UPC-A code if possible. This modular design separates low-level polling and pixel 
unpacking from high-level barcode recognition, enabling clarity and reusability. 
 
 

typedef struct { 
 uint8_t r : 5; 
 uint8_t g : 6; 
 uint8_t b : 5; 
} rgb565_t; 
 
char *process_barcode(rgb565_t *pixels, int len); 

 

15 



 

 Processing Algorithm  
The barcode_decoder module implements a complete software pipeline to extract 

UPC-A barcodes from a horizontal scanline of RGB565 pixels. It begins by converting each 
pixel to grayscale using a weighted sum of red, green, and blue values, then applies adaptive 
thresholding to binarize the scanline based on local brightness. The resulting binary sequence is 
run-length encoded to measure consecutive bar and space widths, which are normalized to unit 
widths based on the expected barcode structure. The decoder then searches for UPC-A guard 
patterns and splits the normalized data into digit-encoded segments, using separate lookup 
tables for left- and right-hand digits. A final checksum is computed and compared against the 
trailing digit for validation. If successful, the function returns a null-terminated string containing 
the 12-digit UPC-A code; otherwise, it returns NULL. This modular pipeline is robust to noise 
and lighting variation, and integrates cleanly with the scanline controller. 

 

 
(Barcode processing stages4) 
 

 Configure Camera Settings (SCCB)  
To configure the camera’s onboard memory, an SCCB interface is used. It includes serial clock 
and serial data pins, and has a protocol very similar to I2C. There were two options to 
implement register configuration for our system: create FPGA hardware to communicate over 
I2C or configure the HPS to communicate over I2C.  
 
Creating FPGA hardware was a safer option due to the known process of configuring GPIO pins 
to interface with the hardware. However, it presented a large amount of complexity in either 
recreating the two-way ACK-based communication of I2C in System Verilog. On the other hand, 
connecting an I2C device to the HPS was a risky option since there are no known examples of 
this for the DE1-SoC board. Still, writing user-level C-code to interface with the standard 
<linux/gpio.h> library for I2C communications was far easier to implement and faster to iterate 
on than writing a custom hardware design in System Verilog. For this reason we chose to use 
the HPS I2C interface. 
 
The Cyclone-V SoC HPS uses an IP Block from Synopsys as an I2C interface. This IP Block 
contains 4 I2C interfaces, each addressable from the configuration files. Only 2 of these 
interfaces are used on the DE1-SoC board and only one is exposed to a physical header.  
 

4 https://www.denso-wave.com/en/adcd/fundamental/barcode/scan/index.html 
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The (HPS_I2C1 / i2c-0) bus is on-board only. It goes to a mux which allows either the HPS or 
FPGA to access it but only goes to on-chip components. The (HPS_I2C2 / i2c-1) bus is 
connected to the LTC Connector and designed to be used with a Linear Technologies expansion 
cards. This second bus is disabled by default. To enable it, we modified the system 
configuration: 
 
soc_system_board_info.xml 

<!-- Before --> 
<DTAppend name="status" type="string" parentlabel="hps_0_i2c1" val="disabled"/> 
 
<!-- After --> 
<DTAppend name="speed-mode" type="number" parentlabel="hps_0_i2c1" val="0"/> 

 
The next step was running make dtb to rebuild the device tree. This also outputs a human 
readable device tree: 
 
soc_system.dts 

/* Before */ 
hps_0_i2c1: i2c@0xffc05000 { 
         compatible = "snps,designware-i2c-21.1", "snps,designware-i2c"; 
         reg = <0xffc05000 0x00000100>; 
         interrupt-parent = <&hps_0_arm_gic_0>; 
         interrupts = <0 159 4>; 
         clocks = <&l4_sp_clk>; 
         emptyfifo_hold_master = <1>; /* embeddedsw.dts.params.... */ 
         status = "disabled"; /* appended from boardinfo */ 
     }; //end i2c@0xffc05000 (hps_0_i2c1) 
 
/* After */ 
hps_0_i2c1: i2c@0xffc05000 { 
         compatible = "snps,designware-i2c-21.1", "snps,designware-i2c"; 
         reg = <0xffc05000 0x00000100>; 
         interrupt-parent = <&hps_0_arm_gic_0>; 
         interrupts = <0 159 4>; 
         clocks = <&l4_sp_clk>; 
         emptyfifo_hold_master = <1>; /* embeddedsw.dts.params.... */ 
         status = "okay"; /* embeddedsw.dts.params.status type STRING */ 
         speed-mode = <0>; /* appended from boardinfo */ 
     }; //end i2c@0xffc05000 (hps_0_i2c1) 
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Finally, the device tree (soc_system.dtb) could be installed in the usual way by moving it to 
/dev/mmcblk0p1 and rebooting. 
 
To verify that the second i2c bus is active and loaded, one can run cat /proc/iomem.  
If both i2c buses are in operation, two entries will be present  

i2c@0xffc04000 
i2c@0xffc05000 

To verify that the camera is connected and operational, one can install i2c-tools . 
Run dpkg -L i2c-tools to verify its installation.  
Four new programs should appear  

/usr/sbin/i2cdump 
/usr/sbin/i2cdetect 
/usr/sbin/i2cget 
/usr/sbin/i2cset 

Running i2cdetect -y -r 1 will display all devices on the second i2c bus. 

  
 

Optical Effects  
To properly instruct users of the barcode scanning system, we plan to experiment with and 
improve the limitations of the device as we iterate the image processing parameters. This way, 
although there may remain significant limitations regarding the flexibility of the device usability, 
we will create the most usable product possible. We have determined the key limitations that will 
guide our design process and affect the usability of the scanner. 

Distance 
How far can the user be from the barcode? This limitation is derived from the resolution of the 
camera and its ability to distinguish narrow and wide bars. We will decide an acceptable number 
of pixels for a narrow bar based on testing (likely no less than 2-3 since the pixel borders will 
never be perfectly aligned with the barcode stripes). The maximum distance will assume that the 
camera is aligned horizontally to the barcode since that is the worst case (smallest bar width). 
Once, upon our testing, the camera consistently misidentifies the barcode, we will know we are 
too far.  
 
Similarly, we need to determine how close the camera can be to the barcode? This limitation is 
based on the camera’s minimum focus distance and field of view. 
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Alignment (Camera Orientation) 
There are three angles which define the alignment of the camera to the barcode: pitch, yaw, and 
roll. For our purposes, pitch and yaw together can be classified as “angle of incidence”, 
representing how aligned the camera sensor plane and barcode plane are. Roll  

Angle of Incidence 
 
Pitch and yaw represent the alignment of the camera 
sensor plane to the plane of the barcode. If the camera 
is normal to the surface, the angle of incidence is 0°. 
The more oblique (misaligned) the camera is from the 
surface, the smaller the projected height and width of 
the barcode. However, while the visual size of the 
barcode shrinks as it is projected at a high angle of 
incidence, the two axes have different effects. 
 

 
Since barcodes are horizontally symmetric, the pitch of the camera does not alter the 
processing, since selecting a single pixel row will mitigate keystoning on the horizontal axis. The 
only limitation imposed by camera pitch is that the center row of pixels remains within the 
bounds of the barcode. This equates to the user moving the scanner up and down to align the 
center row of pixels within the height of the barcode. 
 
On the other hand, since barcodes encode data along their horizontal axis, the yaw of the 
camera causes meaningful keystoning of the bars. Keystoning means that the closer side of the 
barcode will appear larger than the farther side. This 
equates to a non-uniform stretching of the bar widths. 
This effect must be addressed in the software algorithm. 
Our plan is to use the left and right barcode identifiers to 
calibrate the most and least stretched sides of the 
barcode, then linearly interpolate between the two scales 
as we parse narrow and wide bars in the middle. 
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For angle of incidence tolerance, ±72° has been achieved in commercial scanners5 in both tilt and 
skew angle.  

Roll 
The camera roll is similar to the pitch since it does not require a 
software algorithm to account for. Since we will be selecting a 
single row of horizontal pixels from the camera, the user will be 
responsible for orienting the camera to the correct roll. However, 
this does not mean that the camera must have 0° of roll. As long 
as the full width of the barcode is intersected by the X axis of the 
camera, the data will be read. The amount of roll allowed by the 
camera is dependent on the height of the barcode. A taller 
barcode would allow for more roll while still scanning. The one 
additional consideration with roll is that the horizontal sample of 
the barcode would stretch as the roll increases. This is already 
accounted for in the algorithm. 
 
A 360° roll tolerance has been achieved in commercial scanners6.  

Scene Brightness 
The camera will have auto exposure, however scenes which are too dim or bright will compress 
the dynamic range of the image. To solve this we will experiment with using an LED above the 
camera to enable a constant brightness in more lighting conditions.  

Image Noise 
The image will have natural noise due to thermal and electrical effects on the image sensor, 
especially in dim conditions. Raising the brightness with an LED may solve this problem if the 
noise is strong enough to affect the white/black thresholds for bar colors. 

Background 
The barcode will not always be on a pure white background. The patterns to the left and right of 
the barcode may resemble the white/black patterns of the bars. To allow the system to 
recognize the barcode itself, the EAN-13 specification implements standard “guards” on the left 
and right sides of the encoded barcode data. These consistent patterns allow the processing 
system to identify the barcode location. 

 

6 https://www.lmppos.com/product/2D-Wireless-Barcode-Scanner.html 
5 https://www.lmppos.com/product/2D-Wireless-Barcode-Scanner.html 

20 



Unset

 

Full Code 
GitHub Repo  https://github.com/matthew-modi/embedded-project.git 
 
camera.c 

#include <linux/module.h> 
#include <linux/init.h> 
#include <linux/kernel.h> 
#include <linux/platform_device.h> 
#include <linux/miscdevice.h> 
#include <linux/io.h> 
#include <linux/of.h> 
#include <linux/of_address.h> 
#include <linux/fs.h> 
#include <linux/uaccess.h> 
#include <linux/types.h> 
#include "camera.h" 
 
// Define locally if not using HAL includes 
#define ALTERA_AVALON_FIFO_DATA_REG           0 
#define ALTERA_AVALON_FIFO_STATUS_REG         1 
#define ALTERA_AVALON_FIFO_STATUS_EMPTY_MASK  (1 << 1) 
 
#define SCANLINE_OFFSET      (ALTERA_AVALON_FIFO_DATA_REG * 4) 
#define FIFO_EMPTY_OFFSET    (ALTERA_AVALON_FIFO_STATUS_REG * 4) 
#define DRIVER_NAME "camera" 
 
// #define SCANLINE_OFFSET       0x000  // FIFO read port  
// #define FIFO_EMPTY_OFFSET     0x004  // FIFO istatus 
 
struct camera_dev { 
    struct resource res; 
    void __iomem *virtbase; 
    void __iomem *scanline_base; 
    void __iomem *fifo_empty_base; 
} dev; 
 
static long camera_ioctl(struct file *file, unsigned int cmd, unsigned long 
arg) 
{ 
    switch (cmd) { 
    case CAMERA_READ_WORD: { 
        u32 word = ioread32(dev.scanline_base); 
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        if (copy_to_user((u32 *)arg, &word, sizeof(u32))) 
            return -EFAULT; 
        break; 
    } 
 
    case CAMERA_FIFO_EMPTY: { 
        u32 status = ioread32(dev.fifo_empty_base); 
        int empty = (status >> 1) & 0x1;  // Bit 1 is EMPTY flag 
        if (copy_to_user((int *)arg, &empty, sizeof(int))) 
            return -EFAULT; 
        break; 
    } 
 
    default: 
        return -EINVAL; 
    } 
 
    return 0; 
} 
 
static const struct file_operations camera_fops = { 
    .owner = THIS_MODULE, 
    .unlocked_ioctl = camera_ioctl, 
}; 
 
static struct miscdevice camera_misc_device = { 
    .minor = MISC_DYNAMIC_MINOR, 
    .name  = DRIVER_NAME, 
    .fops  = &camera_fops, 
}; 
 
static int __init camera_probe(struct platform_device *pdev) 
{ 
    int ret; 
 
    ret = misc_register(&camera_misc_device); 
    if (ret) 
        return ret; 
 
    ret = of_address_to_resource(pdev->dev.of_node, 0, &dev.res); 
    if (ret) 
        goto fail_deregister; 
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    if (!request_mem_region(dev.res.start, resource_size(&dev.res), 
DRIVER_NAME)) { 
        ret = -EBUSY; 
        goto fail_deregister; 
    } 
 
    dev.virtbase = of_iomap(pdev->dev.of_node, 0); 
    if (!dev.virtbase) { 
        ret = -ENOMEM; 
        goto fail_release; 
    } 
 
    dev.scanline_base = dev.virtbase + SCANLINE_OFFSET; 
    dev.fifo_empty_base = dev.virtbase + FIFO_EMPTY_OFFSET; 
 
    pr_info(DRIVER_NAME ": probe successful\n"); 
    return 0; 
 
fail_release: 
    release_mem_region(dev.res.start, resource_size(&dev.res)); 
fail_deregister: 
    misc_deregister(&camera_misc_device); 
    return ret; 
} 
 
static int camera_remove(struct platform_device *pdev) 
{ 
    iounmap(dev.virtbase); 
    release_mem_region(dev.res.start, resource_size(&dev.res)); 
    misc_deregister(&camera_misc_device); 
    return 0; 
} 
 
#ifdef CONFIG_OF 
static const struct of_device_id camera_of_match[] = { 
    { .compatible = "csee4840,camera-1.0" },  /* your custom node */ 
    { .compatible = "ALTR,fifo-21.1" },       /* default FIFO core */ 
    { .compatible = "ALTR,fifo-1.0" },        /* fallback older format */ 
    { /* sentinel */ } 
}; 
MODULE_DEVICE_TABLE(of, camera_of_match); 
#endif 
 
static struct platform_driver camera_driver = { 
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    .driver = { 
        .name = DRIVER_NAME, 
        .owner = THIS_MODULE, 
        .of_match_table = of_match_ptr(camera_of_match), 
    }, 
    .remove = __exit_p(camera_remove), 
}; 
 
static int __init camera_init(void) 
{ 
    pr_info(DRIVER_NAME ": init\n"); 
    return platform_driver_probe(&camera_driver, camera_probe); 
} 
 
static void __exit camera_exit(void) 
{ 
    platform_driver_unregister(&camera_driver); 
    pr_info(DRIVER_NAME ": exit\n"); 
} 
 
module_init(camera_init); 
module_exit(camera_exit); 
 
MODULE_LICENSE("GPL"); 
MODULE_AUTHOR("Ananya Haritsa, Columbia University"); 
MODULE_DESCRIPTION("Camera driver for polling and stream reading"); 
 

 
camera.h 

#ifndef _CAMERA_H 
#define _CAMERA_H 
 
#include <linux/ioctl.h> 
#include <linux/types.h> 
 
#define CAMERA_MAGIC 'q' 
 
#define CAMERA_READ_WORD    _IOR(CAMERA_MAGIC, 1, u32 *) 
#define CAMERA_FIFO_EMPTY   _IOR(CAMERA_MAGIC, 2, int *) 
 
#endif 
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read_scanline.c 

#include <stdio.h> 
#include <stdlib.h> 
#include <stdint.h> 
#include <fcntl.h> 
#include <unistd.h> 
#include <sys/ioctl.h> 
#include <errno.h> 
#include <string.h> 
#include "camera.h" 
#include "barcode_decoder.h" 
 
#define DEVICE_PATH   "/dev/camera" 
#define POLL_DELAY_US 1000    // 1 ms between polls 
#define PIXEL_COUNT   640     // Number of 16-bit RGB565 pixels to collect 
 
// Must match the bit‐field in barcode_decoder.h 
typedef struct { 
    uint8_t b : 5; 
    uint8_t g : 6; 
    uint8_t r : 5; 
} rgb565_t; 
 
int main(void) { 
    int fd, count = 0; 
    rgb565_t pixels[PIXEL_COUNT]; 
 
    // Open camera device 
    fd = open(DEVICE_PATH, O_RDONLY); 
    if (fd < 0) { 
        perror("Failed to open /dev/camera"); 
        return EXIT_FAILURE; 
    } 
 
    // Wait until FIFO has data 
    printf("Waiting for FIFO to have data…\n"); 
    int empty = 1; 
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    do { 
        if (ioctl(fd, CAMERA_FIFO_EMPTY, &empty) < 0) { 
            perror("ioctl CAMERA_FIFO_EMPTY failed"); 
            close(fd); 
            return EXIT_FAILURE; 
        } 
        usleep(POLL_DELAY_US); 
    } while (empty); 
 
    printf("FIFO has data. Reading scanline…\n"); 
 
    // Read until we've collected 640 RGB565 pixels 
    while (count < PIXEL_COUNT) { 
        uint32_t word; 
        if (ioctl(fd, CAMERA_READ_WORD, &word) < 0) { 
            perror("ioctl CAMERA_READ_WORD failed"); 
            close(fd); 
            return EXIT_FAILURE; 
        } 
 
        // lower 16 bits 
        uint16_t p0 = word & 0xFFFF; 
        pixels[count].r = (p0 >> 11) & 0x1F; 
        pixels[count].g = (p0 >> 5)  & 0x3F; 
        pixels[count].b =  p0        & 0x1F; 
        count++; 
 
        // upper 16 bits (if still room) 
        if (count < PIXEL_COUNT) { 
            uint16_t p1 = word >> 16; 
            pixels[count].r = (p1 >> 11) & 0x1F; 
            pixels[count].g = (p1 >> 5)  & 0x3F; 
            pixels[count].b =  p1        & 0x1F; 
            count++; 
        } 
    } 
 
    close(fd); 
 
    // Process the RGB565 scanline—returns a malloc’d 13-byte string or NULL 
    char *upc = process_barcode(pixels, PIXEL_COUNT); 
    if (upc) { 
        printf("Decoded UPC-A: %s\n", upc); 
        free(upc); 
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    } else { 
        printf("Failed to decode barcode\n"); 
    } 
 
    return EXIT_SUCCESS; 
} 
 

barcode_decoder.c 

#include "barcode_decoder.h" 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
 
#define PIXEL_COUNT 640 
#define MAX_BITS     1024 
 
// (Keep your L_CODES, R_CODES, hamming_distance(), upca_checksum(), 
//  and decode_upca() exactly as before.) 
 
static uint8_t rgb565_to_gray(rgb565_t p) { 
    // Expand bitfields back into full 8-bit channels 
    uint8_t r8 = (p.r << 3) | (p.r >> 2); 
    uint8_t g8 = (p.g << 2) | (p.g >> 4); 
    uint8_t b8 = (p.b << 3) | (p.b >> 2); 
    // Weighted grayscale 
    return (77 * r8 + 150 * g8 + 29 * b8) >> 8; 
} 
 
char *process_barcode(rgb565_t *pixels, int len) { 
    if (len < PIXEL_COUNT) return NULL; 
 
    // 1) Convert to grayscale 
    uint8_t scanline[PIXEL_COUNT]; 
    for (int i = 0; i < PIXEL_COUNT; i++) 
        scanline[i] = rgb565_to_gray(pixels[i]); 
 
    // 2) Smooth (5-point box) 
    uint8_t smoothed[PIXEL_COUNT]; 
    for (int i = 0; i < PIXEL_COUNT; i++) { 
        int sum = 0, cnt = 0; 
        for (int j = -2; j <= 2; j++) { 
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            int idx = i + j; 
            if (idx >= 0 && idx < PIXEL_COUNT) { 
                sum += scanline[idx]; 
                cnt++; 
            } 
        } 
        smoothed[i] = sum / cnt; 
    } 
 
    // 3) Threshold to binary 
    uint8_t binary[PIXEL_COUNT]; 
    int mn = 255, mx = 0; 
    for (int i = 0; i < PIXEL_COUNT; i++) { 
        if (smoothed[i] < mn) mn = smoothed[i]; 
        if (smoothed[i] > mx) mx = smoothed[i]; 
    } 
    int thr = (mn + mx) >> 1; 
    for (int i = 0; i < PIXEL_COUNT; i++) 
        binary[i] = (smoothed[i] < thr); 
 
    // 4) RLE 
    int rle[MAX_BITS], rle_len = 0; 
    uint8_t cur = binary[0]; 
    int cnt = 1; 
    for (int i = 1; i < PIXEL_COUNT; i++) { 
        if (binary[i] == cur) cnt++; 
        else { 
            rle[rle_len++] = cnt; 
            cnt = 1; cur = binary[i]; 
        } 
    } 
    rle[rle_len++] = cnt; 
 
    // 5) Module width via median of first 20 
    int sorted[20], runs = rle_len < 20 ? rle_len : 20; 
    memcpy(sorted, rle, runs * sizeof(int)); 
    for (int i = 0; i < runs-1; i++) 
      for (int j = i+1; j < runs; j++) 
        if (sorted[j] < sorted[i]) { 
          int t = sorted[i]; sorted[i] = sorted[j]; sorted[j] = t; 
        } 
    int mw = sorted[runs/2]; 
    if (mw < 1) mw = 1; if (mw > 10) mw = 10; 
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    // 6) Build bitstream 
    char bs[MAX_BITS]; 
    int bs_len = 0; 
    cur = binary[0]; 
    for (int i = 0; i < rle_len; i++) { 
        int w = rle[i] / mw; 
        if (w < 1) w = 1; 
        for (int k = 0; k < w; k++) 
            bs[bs_len++] = cur + '0'; 
        cur = 1 - cur; 
    } 
    bs[bs_len] = '\0'; 
    if (bs_len < 95) return NULL; 
 
    // 7) Align to best 95-bit window 
    int best_s = -1, best_hd = 1e9; 
    for (int s = 0; s <= bs_len - 95; s++) { 
        int hd = hamming_distance(  bs + s,     "101",   3) 
               + hamming_distance(bs + s+45, "01010", 5) 
               + hamming_distance(bs + s+92, "101",   3); 
        if (hd < best_hd) { best_hd = hd; best_s = s; if (!hd) break; } 
    } 
    if (best_s < 0) return NULL; 
 
    // 8) Decode 
    char *digits = malloc(13); 
    float confs[12]; 
    if (!digits) return NULL; 
 
    if (decode_upca(bs + best_s, digits, confs) != 0) { 
        free(digits); 
        return NULL; 
    } 
 
    // Optionally check checksum here... 
    return digits; 
} 
 

 
barcode_decoder.h 

#ifndef BARCODE_DECODER_H 
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#define BARCODE_DECODER_H 
 
#include <stdint.h> 
 
typedef struct { 
    uint8_t b : 5; 
    uint8_t g : 6; 
    uint8_t r : 5; 
} rgb565_t; 
 
// Returns a malloc’d 13-byte string (12 digits + '\0'), or NULL on failure. 
// Caller must free() it. 
char *process_barcode(rgb565_t *pixels, int len); 
 
#endif // BARCODE_DECODER_H 
 

 
Camera_interface.sv 
 

module camera_interface ( 
 //mock input  
 input logic pclk, 
 input reset, 
 
 //camera inputs 
 input logic href, 
 input logic vsync, 
 input logic [7:0] d, 
 
 //other inputs  
 input logic shutter_raw, //assume shutter is active low 
 
 //outputs  
 output logic fifo_enable, 
 output logic [31:0] wide_bit_out 
 ); 
 
 typedef enum logic [1:0] { 
     RESET, 
     SHUTTER, 
     WRITE, 
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     BLOCK 
 } state_t; 
 
 state_t state; 
 
 logic [10:0] col_count; 
 logic [8:0] row_count; 
 logic [2:0] clk_count; 
 logic [7:0] q; 
 
 logic shutter; 
 logic write_enable; 
 logic prev_vsync; 
 logic curr_vsync;  
 logic write_trigger; 
 logic rst; 
 
 assign curr_vsync = vsync; 
 
 assign write_enable = (href && (row_count == 239)) ? 1 : 0; 
 
 assign write_trigger = write_enable; 
 
 always_ff @(posedge pclk) begin 
 
  if (reset) begin 
   state      <= RESET; 
   col_count  <= 0; 
   row_count  <= 0; 
   prev_vsync <= 0; 
   rst <= 1; 
  end else begin 
   if ((shutter) && ((row_count < 1) || (row_count > 240))) 
    state <= RESET;  
   else case (state) 
    RESET : begin 
     if (vsync) begin 
      col_count <= 11'b0; 
      row_count <= 9'b0; 
      state <= SHUTTER; 
      rst <= 1; 
     end 
    end 
    SHUTTER : begin 
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     rst <= 0; 
     if ((col_count == 11'd0) && (href)) 
      row_count <= row_count + 1; 
     if ((col_count < 11'd1279) && (href)) 
      col_count <= col_count + 1; 
     if ((col_count == 11'd1279) && (href)) begin 
      col_count <= 0; 
     end 
     if ((write_trigger) && (href)) 
      state <= WRITE; 
    end 
    WRITE : begin 
     if ((col_count < 11'd1279) && (href)) 
      col_count <= col_count + 1; 
     if ((col_count == 11'd1279) && (href)) begin 
      col_count <= 0; 
      row_count <= row_count + 1; 
     end 
     if ((row_count==240) && (href)) 
      state <= BLOCK; 
    end 
    BLOCK : begin 
     prev_vsync <= curr_vsync;  
    end 
    default: state <= BLOCK; 
   endcase 
  end  
 end 
 
 always_ff @(posedge pclk) begin 
  if ((write_enable) && (clk_count == 3'd3) && (row_count == 239)) 
begin 
   clk_count <= 3'd0; 
  end else if ((clk_count < 3'd4) && (write_enable)) begin  
   clk_count <= clk_count + 1;  
  end 
 end 
 
 always_ff @(negedge pclk) begin 
 
  if ((write_enable) && (clk_count == 3'd0)) begin 
   wide_bit_out[15:8] <= q[7:0]; 
   fifo_enable <= 0; 
  end  
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  else if ((write_enable) && (clk_count == 3'd1)) begin 
   wide_bit_out[7:0] <= q[7:0]; 
   fifo_enable <= 0; 
  end  
  else if ((write_enable) && (clk_count == 3'd2)) begin 
   wide_bit_out[31:24] <= q[7:0]; 
   fifo_enable <= 0; 
  end  
  else if ((write_enable) && (clk_count == 3'd3)) begin 
   wide_bit_out[23:16] <= q[7:0]; 
   fifo_enable <= 1; 
  end  
 end 
 
 flipflip uut0 (.clk(pclk), .rst(rst), .en(href), .d(d[0]), .q(q[0])); 
 flipflip uut1 (.clk(pclk), .rst(rst), .en(href), .d(d[1]), .q(q[1])); 
 flipflip uut2 (.clk(pclk), .rst(rst), .en(href), .d(d[2]), .q(q[2])); 
 flipflip uut3 (.clk(pclk), .rst(rst), .en(href), .d(d[3]), .q(q[3])); 
 flipflip uut4 (.clk(pclk), .rst(rst), .en(href), .d(d[4]), .q(q[4])); 
 flipflip uut5 (.clk(pclk), .rst(rst), .en(href), .d(d[5]), .q(q[5])); 
 flipflip uut6 (.clk(pclk), .rst(rst), .en(href), .d(d[6]), .q(q[6])); 
 flipflip uut7 (.clk(pclk), .rst(rst), .en(href), .d(d[7]), .q(q[7])); 
 
 debounce_better_version uut8(.pb_1(shutter_raw), .clk(pclk), 
.pb_out(shutter)); 
 
 
endmodule 
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