IP Cores and Platform Designer

Stephen A. Edwards (after David Lariviere)

Columbia University

Spring 2025

IP Cores

IP Integration with Quartus

IP Integration with Platform Designer

Bus Bridges

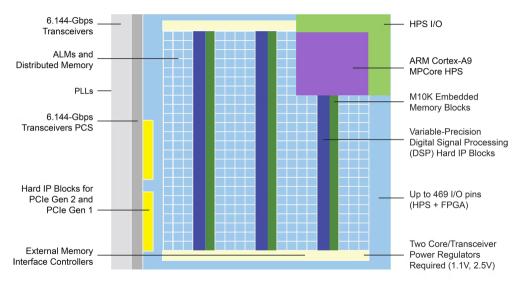
Control and Data Planes

Cyclone V SoC: A Mix of Hard and Soft IP Cores

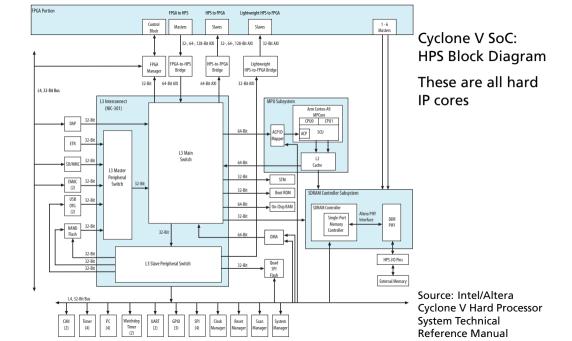
IP = Intellectual Property Hard = wires & transistors

Core = block, design, circuit, etc. Soft = implemented w/ FPGA

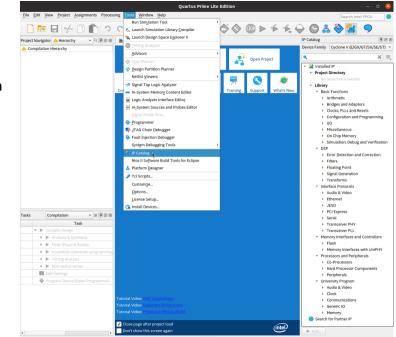
Source: Altera


CPUs: ARM (hard), NIOS-II (soft)

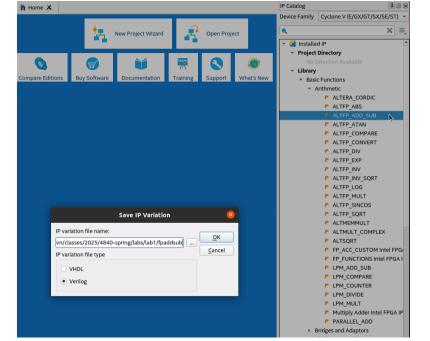
Highspeed I/O: Hard IP Blocks for High Speed Transceivers (PCI Express, 10Gb Ethernet)


Memory Controllers: DDR3

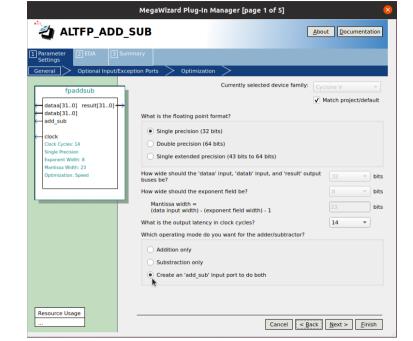
Clock and Reset signal generation: PLLs


Cyclone V SoC: FPGA layout

Source: Intel/Altera



IP Integration with Quartus



The IP Catalog in Quartus

Formerly the "Megawizard" Selecting a floating-point add/sub IP core

Setting its parameters

Resulting fpaddsub.v

```
module fpaddsub ( add_sub, clock, dataa, datab, result);
        add_sub, clock;
  input
 input [31:0] dataa, datab;
 output [31:0] result:
 wire [31:0] sub_wire0;
 wire [31:0] result = sub_wire0[31:0]:
  altfp_add_sub altfp_add_sub_component (.add_sub (add_sub),
                                          .clock (clock).
                                          .dataa (dataa).
                                          .datab (datab).
                                          .result (sub_wire0));
  defparam altfp_add_sub_component.denormal_support = "NO",
          altfp_add_sub_component.direction = "VARIABLE".
          altfp add sub_component.optimize = "SPEED".
          altfp_add_sub_component.pipeline = 14,
          altfp_add_sub_component.reduced_functionality = "NO",
          altfp_add_sub_component.width_exp = 8,
          altfp add sub component.width man = 23:
endmodule
```

Megawizard IP Cores

Core-specific interfaces on each

Arithmetic: +, -, \times , \div , Multiply-Accumulate, ECC

Floating Point: $+, -, \times, \div$

Gate Functions: Shift Registers, Decoders, Multiplexers

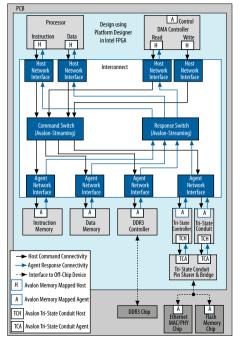
I/O Functions: PLL, temp sensor, remote update, high speed transceivers

Memory: Single/Dual-port RAMs, Single/Dual-clock FIFOs, Shift registers

DSP: FFT, ECC, FIR, etc.

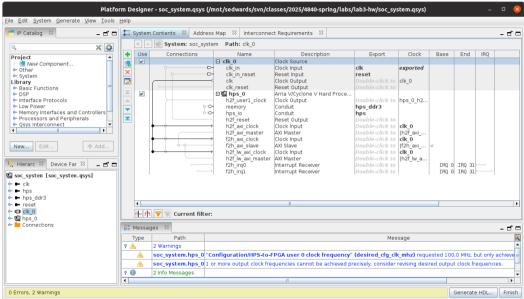
Video: large suite

Some megafunctions are only available on certain FPGAs


IP Integration with Platform Designer

Altera/Intel Platform Designer

Generates the interconnect logic for connecting a mix of IP Cores with Avalon/AXI/APB/ACE interfaces


You specify the components and their connections and Platform Designer generates the Verilog for it all

Formerly "Qsys"

Source: Altera Platform Designer User Guide

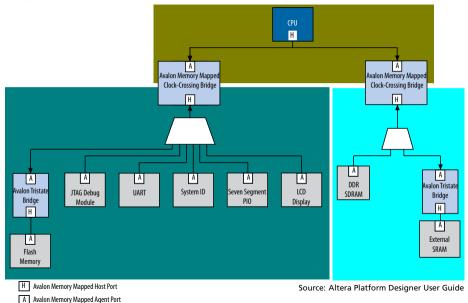
Platform Designer

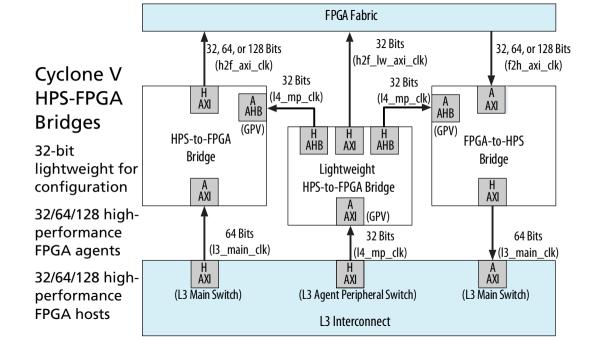
Bus Bridges

Bus Bridges

A bus bridge connects two, often different, buses.

Enables multiple clock domains, different protocols (e.g., AXI \leftrightarrow Avalon), bus widths, etc.

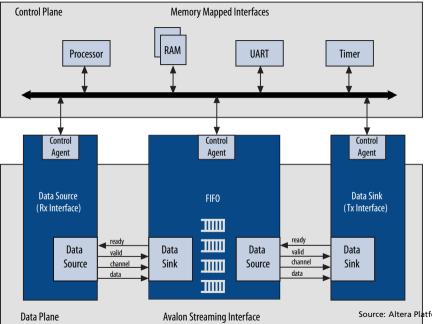

Example Bridge Types:


SOC HPS \leftrightarrow FPGA Bridge

Avalon MM Clock Crossing Bridge

Avalon MM Pipeline Bridge

Clock Crossing Bridge Example



Control and Data Planes

Control Plane: Memory mapped registers typically used for configuring devices, querying status, initiating transactions, etc (low bandwidth)

Data Plane: Streaming directed graphs for actually moving and processing large amounts of data (audio/video, network packets, etc); high bandwidth

A single IP core can have both MM and ST interfaces (including multiple of each).

Source: Altera Platform Designer User Guide

References to Altera/Intel Documentation

Cyclone V Device Handbook: Volume 1: Device Interfaces and Integration

https://www.intel.com/content/www/us/en/docs/programmable/683375/current/ logic-array-blocks-and-adaptive-logic-24877.html

Cyclone V Hard Processor System Technical Reference Manual

https://www.intel.com/content/www/us/en/docs/programmable/683126/21-2/ hard-processor-system-technical-reference.html

Intel Quartus Prime Standard Edition User Guide: Platform Designer

https://www.intel.com/content/www/us/en/docs/programmable/683364/18-1/creating-a-system-with.html