
csee 4840
Embedded System Design

Lab 3: Peripherals and Device Drivers

Stephen A. Edwards
Columbia University

Spring 2025

Implement on the fpga a memory-mapped peripheral (an Avalon mm agent) that receives
communication from the arm processors on the Cyclone V. Communicate with your
peripheral through a Linux userspace program that accesses a device driver you have
written.

Display a ball on the vga screen with your peripheral. Implement an ioctl in your device
drive that sends your peripheral coordinates from software.
1 Introduction

In this lab, you will control your own hardware from your own software, communicating
through a Linux device driver. We supply a base hardware design to extend, a working
example of a vga peripheral you will have to modify, and a working device driver for it
that you will have to adapt to work with your own peripheral.

You will implement a video bouncing ball in this setting. Your peripheral will generate a
vga raster consisting of a ball at a particular location, your userspace C program (software)
will make this ball bounce around the screen, and your device driver will mediate between
your program and your peripheral.

1

2 Compile the vga Component Into a New fpga Image

In this section, you will tell Platform Designer about a new peripheral component, connect
it to the arm processors, and synthesize a new fpga con�guration bitstream.
2.1 Create the vga Ball Component

Download lab3-hw.tar.gz from the class website and unpack it on your workstation. Change
to the lab3-hw directory. Run qsys-edit soc_system.qsys, which will bring up a GUI. Its full
path is /tools/intel/intelFPGA/21.1/quartus/sopc_builder/bin/.

Create a new vga_ball component and connect it to the base design. Select File→New
Component. This should open the Component Editor window.

In the Component Type tab, set Name to vga_ball and Display Name to VGA Ball.
In the Files tab, click Add File. . . under Synthesis Files and select the vga_ball.sv �le. Click

on Analyze Synthesis Files. This should quickly complete successfully; close the pop-up
window. Set Top-Level Module to vga_ball. Some warnings and errors should appear in the
Messages tab; we will �x them.

2.2 Assign the Interface Signals on the vga Ball Component

When Platform Designer analyzes the synthesis �les, it makes some good guesses about
the meaning of each signal on the peripheral, but it is not perfect. Fix the mistakes like this:

Click on the Signals & Interfaces tab. Click on avalon_slave_0 and set its Associated Reset
to reset. Click on <<add interface>> in the left box and select Conduit (to Platform Designer,
a “conduit” is an arbitrary group of signals using an unknown protocol). Set the name of
the new conduit to vga.

Select and drag all the vga_ signals so they are under your newly created vga conduit.
Click on each signal and change its Signal Type to a lowercase version of the name after
the vga_, e.g., vga_blank_n should become blank_n. Type each of these names.

Your new component should appear in the component editor as shown below. Make
sure there are no errors or warnings.

Note that this agent port’s address units are set to words, whose size is set by the
(must be equal) widths of the readdata and writedata ports. In the supplied System Verilog,
writedata is 8 bits wide, so the address port delivers byte addresses, just like those used by
the processor. If you change writedata to 16 bits, words become 16 bits and the address port
delivers an o�set in 16-bit words. The base address continues to point to the �rst register
(whose address is 0), but the second register (with address 1) will appear in software at the
base address plus 2 because functions like iowrite16() use byte addresses.

Also notice that the “read wait” timing is set to 1 cycle, meaning that data being read
from this component (not used in this lab) is expected the cycle after chipselect is asserted,
as shown in the timing diagram.

Once you have eliminated all errors, click on Finish. It will warn you that it is saving
vga_ball_hw.tcl; click on Yes, Save. The Component Editor window should close.

Open vga_ball_hw.tcl with a text editor and add the following three lines after the module

vga_ball section:

set_module_assignment embeddedsw.dts.vendor "csee4840"

set_module_assignment embeddedsw.dts.name "vga_ball"

set_module_assignment embeddedsw.dts.group "vga"

These make the device show up as compatible with csee4840,vga_ball-1.0 in the .dtb �le,
which we will discuss below.

2.3 Connect the vga Ball Component

Platform Designer now knows about your custom component, so connect it to the rest of
your design.

In Platform Designer, add an instance of the new VGA Ball component by selecting it
under “Project” in the library and clicking on the + Add. . . button. By default, it will be
named vga_ball_0.

On the new vga_ball_0 component instance, connect the clock to clk from clk_0 and
connect reset to clk_reset from clk_0.

Connect the avalon_slave_0 port on vga_ball_0 to the h2f_lw_axi_master port on the
hps_0 component (this is the slower “lightweight” bus from the arm processors).

Double-click to export vga_ball_0’s vga conduit in the Export column. Set the name of
the export to vga. This is the name Platform Designer will use in the generated code.

The System Contents tab should now look like this:

Save the system (File→Save), which should write soc_system.qsys.
Generate the Verilog for the design by clicking on Generate HDL. . . (accept the defaults)

or running make qsys.
Once generating Verilog has completed without warnings or errors, click “Finish” to

close Platform Designer.

2.4 Connect the vga Peripheral to its Pins

Your vga Ball peripheral needs to communicate through its conduit through pins to an
o�-chip vga dac. To do this, edit soc_system_top.sv with a text editor to add the following
connections within the instance of soc_system near the end of the �le:

.vga_r (VGA_R),

.vga_g (VGA_G),

.vga_b (VGA_B),

.vga_clk (VGA_CLK),

.vga_hs (VGA_HS),

.vga_vs (VGA_VS),

.vga_blank_n (VGA_BLANK_N),

.vga_sync_n (VGA_SYNC_N)

Platform Designer chose names like vga_blank_n by combining the name of the “Export”
for the conduit (vga, in Platform Designer) with an underscore and the name of each Signal
Type when the conduit was de�ned in the Component Editor.

Delete the two assign statements to the vga signals at the bottom of soc_system_top.sv.

2.5 Compile the Hardware Design with Quartus

To compile the Platform Designer-generated Verilog, run make quartus. This compiles
the System Verilog source (Platform Designer places this in the soc_system directory) into
an “sram object �le” output_�les/soc_system.sof. To do so, it runs the soc_system.tcl script
to create a preliminary project, then runs the Quartus mapping step to build an initial
schematic that enables it to run the hps_sdram_p0_pin_assignments.tcl script generated by
Platform Designer to con�gure certain sdram-related pins. This process can be done in
the Quartus gui, but it’s far easier to let the provided Make�le do it.

This will generate a lot of warnings. We added a list of innocuous warnings in Platform
Designer generated code to a �le called soc_system.srf. Quartus suppresses these warnings
(they’re placed in “Flow Suppressed Messages”). Look carefully at any warnings that are
still being generated, especially for those from your �les, such as vga_ball.sv. All of these
are logged in various .rpt �les found in the output_�les directory.

2.6 Check the Fmax of the 50 MHz Clock

You only specify cycle-level timing in the synthesizable rtl subset of System Verilog: which
signals should change in each cycle, but not their timing during a clock cycle.

We ask (in soc_system.sdc) for a “slow” 50 MHz fpga clock. Quartus does its best to
restructure the logic to meet this, but it may fail on a circuit with too many gates in series.

Quartus performs Static Timing Analysis to verify the generated circuit meets this clock
constraint. This involves calculating precise delay numbers for every “gate” and “wire” in
the generated circuit and then running an all-paths longest path calculation. Such analysis
is standard in modern logic design �ows for fpgas and asics.

One key metric is slack: the amount of time between when data is guarateed stable and
when the clock may come. If you have negative slack, your data may arrive too late and
the circuit is likely to produce incorrect results.

The other key, related metric is Fmax, the highest frequency allowed on a given clock
before the circuit may start to misbehave.

You can �nd the results of this analysis in two places. If you run the Quartus gui, the
results of static timing analysis is available in one of the many report windows. For example,
Fmax is 113 MHz for the skeleton design provided, much higher than the 50 MHz requested.

This number is also reported in output_�les/soc_system.sta.rpt:

+---

; Slow 1100mV 85C Model Fmax Summary

+-------------+-----------------+---

; Fmax ; Restricted Fmax ; Clock Name

+-------------+-----------------+---

; 113.19 MHz ; 113.19 MHz ; clock_50_1

; 1184.83 MHz ; 717.36 MHz ; soc_system:soc_system0|soc_system_hps_0:hps_0|soc_

+-------------+-----------------+---

2.7 Copy soc_system.rbf To Your SD Card

After Quartus �nishes compiling, convert the .sof �le to an .rbf �le by running make rbf.
Copy the output_�les/soc_system.rbf into the boot partition of your sd card. You can

mount your sd card on your workstation and copy the �le. Alternatively, mount the boot
partition by running mount /dev/mmcblk0p1 /mnt on your DE1-SoC then use scp to copy
the �le from your workstation to your board, e.g.,

scp sedwards@micro11.ee.columbia.edu:lab3/soc_system.rbf /mnt

Ensure the �le has actually been written out to the card: type sync at the command-line.

2.8 Test Your Peripheral from U-Boot (optional)

To isolate hardware from software problems, you can manually exercise your peripheral’s
registers using u-boot, the �rst stage bootloader. For example, after copying your .rbf �le
to the boot partition, connect your board to your workstation via a mini-usb cable, run
screen /dev/ttyUSB0 115200, boot your fpga board, and quickly press a key (such as space)
to enter the u-boot command line:
U-Boot SPL 2013.01.01 (Jan 12 2019 - 19:40:48)

BOARD : Altera SOCFPGA Cyclone V Board

CLOCK: EOSC1 clock 25000 KHz

CLOCK: EOSC2 clock 25000 KHz

...

U-Boot 2013.01.01 (Jan 12 2019 - 19:41:00)

CPU : Altera SOCFPGA Platform

...

Warning: failed to set MAC address

Hit any key to stop autoboot: 0

SOCFPGA_CYCLONE5 #

Unless you rebooted from Linux, the fpga is not yet con�gured, so read the .rbf �le, use
it to con�gure the fpga, and enable the bus bridges:

SOCFPGA_CYCLONE5 # fatload mmc 0:1 $fpgadata soc_system.rbf

reading soc_system.rbf

7007204 bytes read in 333 ms (20.1 MiB/s)

SOCFPGA_CYCLONE5 # fpga load 0 $fpgadata $filesize

SOCFPGA_CYCLONE5 # run bridge_enable_handoff

Starting application at 0x3FF79598 ...

Application terminated, rc = 0x0

Now, you can issue memory write commands to modify registers. Platform Designer put
my vga_ball agent at address ff20 0000, so you can set the red, green, and blue components
of the background color using the “memory write” command:

SOCFPGA_CYCLONE5 # mw.b ff200000 70

SOCFPGA_CYCLONE5 # mw.b ff200001 d9

SOCFPGA_CYCLONE5 # mw.b ff200002 b3

The base addresses of fpga peripherals begin at ff20 0000, which is the base address
of the bus bridge. Each peripheral has its own o�set beyond that. Base addresses and/or
o�sets can be found in Platform Designer, in the soc_system.dts �le, in the /proc/device-tree

directory, or in /proc/iomem if your kernel driver is installed.

3 Tell the Linux Kernel About Your Peripheral Through the Device Tree

The Linux kernel employs a persistent data structure known as the Device Tree to describe
the structure of a hardware platform. It contains information about processors, memory
regions, bus bridges, and most importantly, the types and memory location of peripherals
such as the vga Ball. Platform Designer generates a similar soc_system.sopcinfo �le that,
in concert with the soc_system_board_info.xml �le, can be used to generate an apporiate
soc_system.dtb �le, a binary representation of the Device Tree that is normally loaded as
part of the boot process.

Run embedded_command_shell.sh to add sopc2dts and dtc to your path and then generate
soc_system.dtb by running make dtb. These programs are part of the Intel SoC fpga
Embedded Development Suite, which is a separate download from the Intel Quartus website.

Verify that the vga Ball peripheral appears in the soc_system.dts �le, which should include

vga_ball_0: vga@0x100000000 {

compatible = "csee4840,vga_ball-1.0";

reg = <0x00000001 0x00000000 0x00000008>;

clocks = <&clk_0>;

}; //end vga@0x100000000 (vga_ball_0)

The entry itself comes from the vga_ball_0 module instance in Platform Designer
(soc_system.qsys). The compatible string is controlled by the set_module_assignment state-
ments you should have added to the vga_ball_hw.tcl �le.

As you did for the .rbf �le, copy the soc_system.dtb �le to your sd card’s boot partition.

4 Communicate with Your Peripheral Through Software

Connect the console port on your DE1-SoC board (via the mini-usb cable) to your worksta-
tion and run screen /dev/ttyUSB0 115200 as you did in lab 2.

Connect a vga monitor to your DE1-SoC. Boot Linux on your board from the sd card
with your new soc_system.rbf and soc_system.dtb �les (your sd card from lab2 is otherwise
�ne). If your board is already powered on, restart it by typing reboot (don’t power-cycle it).

Boot Linux on your board. It should go through the normal boot process and you should
see a white box against a colored background on the vga monitor.

Verify that the kernel sees the vga Ball device in the device tree:
ls "/proc/device-tree/sopc@0/bridge@0xc0000000/"

#address-cells clock-names compatible ranges reg-names

#size-cells clocks name reg vga@0x100000000

cat "/proc/device-tree/sopc@0/bridge@0xc0000000/vga@0x100000000/compatible"

csee4840,vga_ball-1.0

4.1 Compile and Run the Sample Program

On your board, download and install linux-headers-4.19.0.tar.gz, which includes the Make�le

for compiling kernel modules.
wget https://www.cs.columbia.edu/~sedwards/classes/2025/4840-spring/linux-headers-4.19.0.tar.gz

tar Pzxf linux-headers-4.19.0.tar.gz

ls /usr/src/linux-headers-4.19.0

Documentation arch drivers init mm scripts usr

Kconfig block firmware ipc modules.order security virt

Makefile certs fs kernel net sound

Module.symvers crypto include lib samples tools

Install the kernel module mangement programs (e.g., insmod, rmmod).

apt install -y kmod

Download lab3-sw.tar.gz from the class website to your board, unpack it, compile it,
install the kernel module.
wget https://www.cs.columbia.edu/~sedwards/classes/2025/4840-spring/lab3-sw.tar.gz

tar zxf lab3-sw.tar.gz

cd lab3-sw

Compile the device driver and user program, install the kernel module, and verify that it
works. This should look like

make

make -C /usr/src/linux-headers-4.19.0 SUBDIRS=/root/lab3 modules

make[1]: Entering directory '/usr/src/linux-headers-4.19.0'

CC [M] /root/lab3/vga_ball.o

Building modules, stage 2.

MODPOST 1 modules

CC /root/lab3/vga_ball.mod.o

LD [M] /root/lab3/vga_ball.ko

make[1]: Leaving directory '/usr/src/linux-headers-4.19.0'

cc hello.c -o hello

insmod vga_ball.ko

lsmod

Module Size Used by

vga_ball 16384 0

./hello

VGA ball Userspace program started

initial state: f9 e4 b7

ff 00 00

00 ff 00

00 00 ff

ff ff 00

...

ff 00 ff

VGA BALL Userspace program terminating

rmmod vga_ball

rmmod: ERROR: ../libkmod/libkmod.c:514 lookup_builtin_file() could not open

builtin file '/lib/modules/4.19.0/modules.builtin.bin'

You may ignore the error from rmmod.
make compiles the kernel module (vga_ball.ko) and the userspace program (hello).
insmod loads the generated kernel module. In the supplied device driver, doing this

should change the display. lsmod lists installed modules.
The hello program is a userspace program that communicates with the vga_ball device

driver through the ioctl system call. It opens the device and reads and writes its state,
which changes the color of the background.
rmmod removes the kernel module, which is necessary any time you modify and re-

compile the module.

5 What to Do

Modify the hardware and software in the skeleton you have been provided to display
a bouncing ball. Change both the interface and contents of the hardware peripheral so
that it displays a stationary ball at a software-controllable set of coordinates. Have your
peripheral respond to writes to one or more addresses that control the location of the ball.

The register map for the provided vga ball component consists of three single-byte
registers, one for each color:

O�set 7 · · · 0 Meaning

0 Red Red component of background color (0–255)
1 Green Green component of background color (0–255)
2 Blue Blue component of background color (0–255)

Change this register map so that you can convey (G, H) coordinates of your ball to the
hardware. You may modify the width of the agent interface (this is the writedata port in
vga_ball.sv; it is currently 8 bits, but you may want to use 16 or 32) and the number of
registers.

Update the comment in vga_ball.sv to re�ect your new register map.
Record the most conservative Fmax of your new peripheral (Slow 1100 mV, 85 C) and

make sure it is above the required 50 MHz.
Adapt the provided device driver to communicate with your peripheral. E.g., create an

ioctl that sets the coordinates of the ball.
Write a userspace program that bounces the ball by repeatedly communicating the new

coordinates to your peripheral through your device driver.
You may observe that your ball “tears” as it moves across the screen. This is caused by

changing the ball’s coordinates while one of its lines is being generated. To �x this, make
it so that your ball’s coordinates only change when other lines are being displayed.

6 What to turn in

Find an overworked TA and show him your bouncing ball, your updated register map
information in a comment in vga_ball.sv, and the Fmax of your completed project. Once
he is satis�ed, collect just the �les you wrote or modi�ed for this lab in a directory called
“lab3,” make a tarball with tar zcf lab3.tar.gz lab3, and submit that via Courseworks. This
should include the SystemVerilog for your peripheral and C source for your device driver
and userspace program.
Do not submit everything in your lab3-hw directory: it is too big.

7 Platform Designer Hints

7.1 Editing the Source of Your Platform Designer Component

If you modify the SystemVerilog for your hardware component without changing its

interface, regenerate your system with Platform Designer then re-run Quartus. Do this by
runningmake qsys-clean ; make qsys or open Platform Designer from Quartus (Tools→Qsys)
and click on Generate HDL. . . .

If you modify the interface your hardware component (e.g., to change the number of
visible registers, add a read function, or change the signals passed through the conduit),
edit the component. Start Platform Designer (e.g., run qsys-edit), open your .qsys �le, select
your component under “Project,” and click “Edit.” This should bring up the Component
Editor window.

Re-analyze the synthesis �les as you did in Section 2.1, make sure the interface signals
are assigned correctly, and click Finish.

Every time you update the compoent, re-insert the set_module_assignment directives
mentioned in Section 2.2.

In Platform Designer, select File→Refresh System (or just press F5). It should complete
with a reassuring warning indicating the version of your component has changed. Hovering
over the instance of your component should also indicate its version has changed. Save
your project after doing this to update the .qsys �le.

Now, select Generate→Generate. . . to instruct Platform Designer to regenerate your
system so Quartus can recompile it. Alternately, run make qsys-clean ; make qsys, which
does the same thing from the command line.

7.2 Don’t Edit Copies

Do not edit the �les in the synthesis directory (e.g., in lab3-

hw/synthesis/submodules). These are copied by Platform De-
signer and will be overwritten the next time Platform De-
signer runs.
7.3 Viewing Components as Blocks

Select a component and then View→Block Symbol. This
shows how Platform Designer interprets the interface to a
component.

	Introduction
	Compile the vga Component Into a New fpga Image
	Create the vga Ball Component
	Assign the Interface Signals on the vga Ball Component
	Connect the vga Ball Component
	Connect the vga Peripheral to its Pins
	Compile the Hardware Design with Quartus
	Check the Fmax of the 50 MHz Clock
	Copy soc_system.rbf To Your SD Card
	Test Your Peripheral from U-Boot (optional)

	Tell the Linux Kernel About Your Peripheral Through the Device Tree
	Communicate with Your Peripheral Through Software
	Compile and Run the Sample Program

	What to Do
	What to turn in
	Platform Designer Hints
	Editing the Source of Your Platform Designer Component
	Don't Edit Copies
	Viewing Components as Blocks

