CSEE 4840
Embedded System Design Lab 1: Using the FrGa

Stephen A. Edwards, Columbia University

Spring 2025

Learn how to code in SystemVerilog, run the Verilator simulator, observe simulated wave-
forms with GTKWave, and compile and download an FpGa-only project to the DE1-SoC
board. You will create a system that tests the Collatz conjecture over a range of values.

For this lab, you will use the open-source Verilator SystemVerilog simulator, the open-
source GTKWave waveform viewer, and Quartus Prime 21.1 FPGa design software produced
by Intel/Altera for their chips. You can find this software on the workstations in 1235 Mudd
(on which you should have an account if you registered for the class), you may be able to
run it on your laptop, or use some combination of both. Quartus Prime 21.1 Lite is free
to download from the Intel website https://www.intel.com/content/www/us/en/products/
details/fpga/development-tools/quartus-prime/resource.html, although you will have
to register for a free account and it only runs under Windows or Linux. While there are
newer versions available, we suggest you stick to 21.1 for consistency.

To submit this assignment do two things:

1. Put your SystemVerilog code files (hex7seg.sv, collatz.sv, range.sv, and lab1.sv) into a
.tar.gz file (e.g., run make lab1.tar.gz) and upload it to Courseworks.

2. Demonstrate your working system to a TA. See Section 10 for details.

https://www.intel.com/content/www/us/en/products/details/fpga/development-tools/quartus-prime/resource.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-tools/quartus-prime/resource.html

1 Download and Unpack the Lab 1 files

Download lab1.tar.gz from the class website! and extract it with tar zxf lab1.tar.gz. This
will create a lab1 directory containing the files listed below.

Name Contents

Makefile Commands for creating the Quartus project files, compiling, building
the lab1.tar.gz file, cleaning up, and running Verilator.

hex7seg.sv A module skeleton for a hex-to-seven segment decoder for displaying
numbers on the board

collatz.sv A module skeleton for computing the Collatz iteration for a particular
number.

range.sv A module skeleton for computing the Collatz iteration over a range
of numbers and storing the iteration counts in a small memory.

lab1.sv A module skeleton that provides a user interface to the modules
above.

hex7seg.cpp A Verilator test bench for the hex7seg module.

collatz.cpp A Verilator test bench for the collatz module, which, when working,
prints a Collatz sequence from a particular value.

range.cpp A Verilator test bench for the range module, which, when working,
runs the collatz module over a range of numbers and stores the result
in a small memory.

collatz.gtkw A GTKWave “save” file that remembers what signals to display, etc.
for the collatz module.

range.gtkw A GTKWave “save” file for the range module.

range-done.gtkw A GTKWave “save” file that displays what should be the end behavior
of the range module.

del-soc-project.tcl A Tcl script that creates the lab1 project files.
Includes pin assignments.

Modify the hex7seg.sv, collatz.sv, range.sv, and lab1.sv files.

You may modify any other files; we will not grade them.

1wget https://www.cs.columbia.edu/~sedwards/classes/2025/4840-spring/labl.tar.gz

2 Implement and Test a Hex-to-Seven-Segment Decoder

The DE1-SoC includes six seven-segment displays, which we
will use to display hexadecimal numbers. Each segment is con-
nected to its own pin. These segment signals are active-low: a
“0” turns them on. Bit 0 (the rightmost) of each 7-bit segment
vector is the “a” segment, bit 1 is the “b” segment, etc., up to
bit 6, the leftmost, which controls the “g” segment.

The hex7seg.sv file includes the interface to this module:

module hex7seg(input logic [3:0] a,
output logic [6:0] y);

Implement the body of the sevent-segment decoder module in hex7seg.sv. We have provided
a Verilator testbench to test your implementation. Make sure Verilator is installed and
compile and run the simulation:

make hex7seg
40 OK
79 OK
24 0K
30 OK
19 OK
12 OK
02 OK
78 OK
00 OK
10 OK
08 OK
03 OK
46 OK
21 OK
06 OK
Qe OK
SUCCESS

-H ® QO O T © W 0 N O Ul A W N — O &

which shows the 16 possible inputs and their outputs. An incorrect output will produce

7 7a INCORRECT expected 78
8 00 OK
FAILED

Run make lint to have Verilator run a fast, thorough check on your SystemVerilog code.
The solution you eventually submit should not report any lint errors.

3 The Collatz Conjecture

The Collatz Conjecture is that for any positive integer n, f¥(n) = 1 for some positive
integer k, where
n/2, if n is even; and
f(n)=={

3n+1 otherwise,

and f*(n) means to apply the function f k times: f*(n) = f(f(--- f(n)---)).

k times

For example, for n = 5, the sequence is
5168421,
and for n = 7, the sequence is

7221134175226134020105168421.

The number of iterations it takes to reach 1 varies erratically. Here is a list of various n and
the number of iterations required for that n. These number are in hexadecimal, which you
will eventually display on the DE1-SoC.

7 1 17 10 27 23 f7 30 3ff 3f 4of 3f 4ef bl
8 4 18 b 28 9 f8 6e 400 b 410 20 4fo 28
914 19 18 29 6e f9 30 401 25 411 7d 4f1 28
a 7 la b 2a 9 fa 6e 402 25 412 7d 4f2 20
b f 1b 70 2b Te fb 42 403 25 413 7d 4f3 20
c a 1c13 2c N fc 6e 404 7d 414 20 4f4 28
d a 1d13 2d 11 fd 6e 405 7d 415 20 4f5 28
e 12 1e 13 2e 1 fe 30 406 7d 416 7d 4f6 20

f 12 1f 6b 2f 69 ff 30 407 25 417 7d 4f7 20
1@ 5 20 6 30 c 100 9 408 7d 418 20 4f8 3a
11 d 21 1b 3119 101 7b 409 9¢ 419 3f 4f9 20
1215 22 e 3219 102 7b 40a 7d 41a 20 4fa 3a
1315 23 e 3319 103 7b 40b 7d 41b 5e 4fb 54
14 8 2416 34 c 104 1e 40c 7d 41c 51 4fc 3a
15 8 2516 35 c 105 1e 40d 7d 41d 51 4fd 3a
16 10 26 16 36 71 106 1e 40e 3f 41e 51 4fe 85

4 Write and Test a Collatz Sequence Generator

Implement a module that can test the Collatz conjecture for a particular n by completing
the body of the provided collatz module in collatz.sv. Its interface is

module collatz(input logic clk, // Clock
input logic go, // Load value from n; start iterating
input logic [31:0] n, // Start value; only read when go = 1
output logic [31:0] dout, // Iteration value: true after go = 1
output logic done); // True when dout reaches 1

In every cycle, if go is true, the module should reset and start counting from the 32-bit
unsigned integer value on n. The dout signal should always output the current value. In
every other clock cycle, the module should compute the next number in the sequence by
checking whether the current number is positive and either divide by two or multiply by
three and add one. When the value reaches 1, done should be asserted and the module
should stop producing new numbers until the next go input.

Here is the correct output running with the input 7. Note that dout is loaded with 7 starting
at the first rising edge of the clock where go is asserted, but 22, the second number in the
sequence, only appears in the first cycle after go is asserted.

clk e T e e YT e Y e e e YT e Y Y T o o I
go

n[31: 0] 7

dout[31:0] [0 |7)2 T)38 7 52)% Y3 A0 0)0)5 X6)8 @) T
done

We have provided a Verilator test bench that supplies appropriate inputs to the collatz
module (i.e., clk, go, and n). To compile your collatz.sv file with the provided test bench
into a Verilator simulator, run make obj_dir/Vcollatz or

verilator -trace -Wall -cc collatz.sv -exe collatz.cpp -top-module collatz
cd obj_dir
make -j -f Vcollatz.mk

Run the Verilator simulator for this module by typing make collatz.vcd or
./obj_dir/Vcollatz, which prints the sequence it finds. When working, it prints

$./obj_dir/Vcollatz
7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

As a side-effect, running the Veollatz simulation produces a Value Change Dump (VCD)
file collatz.ved, which you can view with the gtkwave program. Invoke it with gtkwave
collatz.ved. A “save” file controls which signals are displayed. You may use the one
provided by running gtkwave --save=collatz.gtkw collatz.vcd.

5 Write and Test a Module That Checks a Range of Values

Write a module that uses your Collatz sequence generator to test the Collatz hypothesis
for a sequence of numbers and record the number of iterations each took. Fill in the body
of the range module provided in range.sv. Its interface is

module range

#(parameter
RAM_WORDS = 16, // Number of counts to store in RAM
RAM_ADDR_BITS = 4) // Number of RAM address bits
(input logic clk, // Clock
input logic go, // Read start and start testing
input logic [31:0] start, // Number to start from or count to read
output logic done, // True once memory is filled

output logic [15:0] count); // Iteration count data once finished

The two compile-time parameters RAM_WORDS and RAM_ADDR_BITS set the size of the
memory in which the iteration counts should be stored.

The go signal should tell the module to read the start input and start generating Collatz
iterations from that number. The number of iterations it takes to reach 1 starting from start
should be written into address 0 in RAM; the number of iterations from start + 1 should be
written into address 1, etc. Finally, done should be asserted when the ram is filled.

Once done is asserted, applying an address to start should read the memory from that
address and present it on count in the next cycle.

Fill in the skeleton range.sv file provided. While you may modify anything you want except
the interface to the module, we suggest you use the Ram and internal signals provided.

We have supplied a testbench file range.cpp that provides the clock, go, and start signals,
then waits for done before reading out the number of iterations observed by applying
different values of start to read the value out through the count signal.

As before, make range.vcd will compile the simulator, run the testbench, print the iteration
counts that are written to memory, and write the range.vcd file.

Below is the timing diagram of our solution as it starts; your solution only has to obey the
protocol at the interface (clk, go, start, done, and count).

T| nme] s s s s s

clk I B
go

start[31:0] (7

done |

count[15:0] (0

runni ng [

nun{ 3: 0] (0 1T X2

we \ [1

din[15:0] (O @ B @ % F N B F 0 T X7 X YW)5 6 T 0 7 8 F X
cgo [[

n[31: 0] [0y 18)

dout [31:0] (0 T2 I3 7T)67 % I A0 X0 0 6 6)8 @ 2 T) @ W T ¥ B X
cdone | 1 I

The go input switches running to true; loads n with the value on start; resets num, the Ram
address, to 0; sets din, the iteration count, to 1; and pulses cgo high for a cycle to start the
Collatz iterator module.

Every running cycle when cgo is low before cdone goes high, din, the number that will be
ultimately written to the RAM, is increased by one. When the Collatz module asserts cdone,
the we signal is pulsed high for just a single cycle to write the current count (din) to the
RAM at the address in num. The cycle after cdone is asserted, n is increased by one, din is
reset to 1, and cgo is asserted again to start testing the next value.

Below is the timing diagram of our solution as it finishes the Collatz iterations and switches
to reading out the numbers it found.

T| me U B B s s

clk) U e T O
go

start[31:0] 7 (O 2 D D D N (A T I (O (VA - D (L
done 1

count[15: 0] 18 W@ X0 5 W 8)F @ e X
runni ng \

nuni 3: 0] 5

we 1

din[15:0])78)@ 0 YT XZ)3 14 Y5 ¥I6

cgo

n[31: 0] 7 V3

dout[31:0] 263 A0)20 10)5 X6)8 & 2 X

cdone [

After we is asserted for the highest RamM address (15, set by RAM_WORDS), running turns off
and done pulses once. This tells the testbench to feed 0, 1, 2, ... into start and the number of
iterations for each value is read out on count. For example, start = 0 produces a 17 on count,
corresponding to n = 7, and start = 11 produces a 21, corresponding ton = 7 + 11 = 18.

Running the Vrange simulator directly prints out these iteration counts:

$./obj_dir/Vrange
7 17
8 4
9 20
10 7
11 15
12 10
13 10
14 18
15 18
16 5
17 13
18 21
19 21
20 8
21 8
22 16

Note that these counts match those listed earlier, although they were in hexadecimal.

6 Set the FrGa Configuration Mode

A microscopic set of
switches on the back of [EL e L

the board controls the il - L~
source of the rrGa’s con- LI LA 5 R B
figuration information. [ECLEEE [EENCH SR =
For this lab, set it to the L5 N B IE-=
“Active Serial” mode as IHollB - Lo
shown on the right. “0” SW10 “1”

For this lab, we will be configuring the FpGA with a JTAG interface through uUss; the Active
Serial mode makes the board start up in a factory demonstration mode.

Mode 6 5 4 3 2 1

Active Serial (Default; use for this lab) Of Of On On Off On
FPPx16 (from SD card; later labs will use this)y Off On On On On On
FPPx32 (from Linux) Off On Off On Off On

7 Compile and Download the Project Via the Command-Line

Enter the lab1 directory and run make lab1.qgpf to create the project from dei-soc-project.tcl.
This should report “Info (23030): Evaluation of Tcl script de1-soc-project.tcl was successful,”
but if it complains “quartus_sh: Command not found,” make sure your PATH variable
includes the directory for the Quartus binaries (on the 1235 Mudd machines, this is done
by /etc/profile.d/quartus.sh when you log in). Running this script creates labl.qpf (the main
project file), lab1.gsf (settings, including files and pins), and lab1.sdc (clock constraints).

Compile the project from the command line with make output_files/lab1.sof. This reads
the .sv files and ultimately produces the lab1.sof (sraM object) file, which is downloaded to
the FPGA to run your project. This takes a while, and will report and handful of warnings, but
should eventually report “Info (293000): Quartus Prime Full Compilation was successful””
You may ignore warnings “(292013) Feature LogicLock” and “(15714) Some pins have
incomplete I/O assignments”; others should be fixed.

Connect the DE1-SoC board to your workstation. Connect the
+12V power supply to the board near the red power button, con-
nect a UsB cable to the “usB Blaster” port on the board (next to the
power button) and to your workstation, and power on the board
with the red button.

Once your project is compiled, download the .sof file to the DE1-SoC board by running
make program. A variety of things can go wrong. If you get “Error (213013): Programming
hardware cable not detected,” check your board’s power and UsB connection to your
workstation.

When powered and connected, the board should appear as a usB device. Under Linux,
running 1susb should report the board as 09fb:6810 Altera or 09fb:6010 Altera.

The Quartus software must also have permission to access the port. Run jtagconfig. With
the board connected and powered on, it should report

$ jtagconfig
1) DE-SoC [1-1.5.2.2]
4BAQ0477 SOCVHPS
02D120DD 5CSE (BA5|MA5) /5CSTFD5D5/ . .

If Isusb “sees” the board but jtagconfig reports “No JTAG hardware available,” there is a
permission problem, which can be resolved by telling udev to make the board accessible to
everybody. As root, create the file /etc/udev/rules.d/51-altera.rules containing

ATTR{idVendor}=="09fb"”, ATTR{idProduct}=="6010", MODE="0666"
ATTR{idVendor}=="09fb", ATTR{idProduct}=="6810", MODE="0666"

8 Compile and Download the Project Via the GUI (optional)

The project can also be compiled and downloaded via the Quartus Gur. Start from a
directory with a clean unpack of labl.tar.gz (or run make clean), then start Quartus by
typing quartus.

Create the project files by running a Tcl script. Open the Tcl console window with
View—Utility Windows. .. —Tcl Console. Type source del-soc-project.tcl in the Quar-
tus Prime Tcl Console window. This will create the project files labl.qpf, labl.qsf, and
lab1.sdc.

Open the lab1.gpf project with File—Open Project....

Compile the project with Processing—Start Compilation. This will take a while and should
eventually report “Quartus Prime Full Compilation was successful” There should be no
errors, but there may be warnings.

Download the configuration to the FpGA. Select Tools—Programmer. If “No Hardware”
appears, connect the board to your workstations via uUsB and power it on (see the previous
section), then click on “Hardware Setup...” You should see “DE-SoC” under “Available
hardware items.” Select “De-SoC[- - -]” under “Currently selected hardware” and click
“Close”

Set up the JTAG chain by g
clicking on “Auto Detect” File Edit View Processing Tools Window Help

and select “5CSEMAS5” & Hardware Setup... | DE-SoC[1-15.2.2]] Mode: |JTAG +| Progress: :]
Answer “yes” if it asks] Enable real-time ISP to allow background programming when available

to update the program-

Vst File Device Checksum | Usercode Program/ Verify Blank-

mer’s device list. Conligs ey
i <none> SOCVHPS 00000000 <none>

Tell it to conﬁgure the o Auto Detect output files/labl.sof SCSEMASF31 0OB4A93C 00B4AZ3C (]

FPGA with the labl.sof X Delete

file by clicking on the B add File.

“5CSEMAS5” device then Fochangerie

“Change File” and choose <

the labl.sof file in the idd Devce . o | i

output_files directory. fw J|— _’E -

Mark the “Program/- 2 e Fiomiries W

Configure” checkbox on
the 5CSEMAS5F31 line.
It should look like the
image on the right.

Finally, click on “Start” to program the rFpGa. This should quickly report “100% (Successful)”
on the programmer.

9 Add a User Interface

Add a user interface that uses the four pushbuttons and the ten switches to test the number
of iterations taken to reach 1 for various values of n. Modify the lab1.sv file we provided.

Have the ten switches sw[9:0] control the value n at the start of the range to test. Make
the leftmost button kEY[3] run the range module over 256 values (i.e., trigger go) starting
from the value on the switches (in binary).

Use your hex7seg module to make the leftmost three seven-segment displays show the
value of n (specifically, the lower twelve bits) and have the rightmost three displays show
the number of iterations taken to reach 1 for that value of n.

For example, if you enter 7 (in binary) on the switches and press key[3], the display should
show 007011, which indicates n = 7 takes 17 iterations (in decimal).

Make it so that the rightmost buttons, kEY[0] and KEY[1] increment and decrement the
value of n being displayed. Make it so holding them makes the value change about 5 times a
second, e.g., by using a 22-bit counter running off the 50 MHz clock and only changing the
value when this counter wraps around. The lowest n should always be set by the switches;
the buttons should just control which number (between n and n + 255) is being read out.

Make it so KEY[2] (second to left) resets the difference between the n displayed and the
value on the switches.

10 Demonstrate Your Working System

Every team needs to demonstrate their lab 1 design to a TA. The main objective of the demo
is to test the user interface, so it will focus on the buttons, switches, and seven-segment
displays. We will check the Collatz values from your submitted code.

You can demonstrate your working system during TaA office hours.

We will check the following input and output during the demo:

« switch input
« seven-segment display output

« button input

regular button press

fast button press

slow button press

button press and hold

multiple button press

« indication that range is complete

This rubric deliberately does not specify exactly what your system should do in each of
these cases because we want you to think about what “the right thing” is according to what
a person would expect. For many of these actions there are multiple appropriate responses.
Consider what you would expect from each action, and design your system accordingly.
The Tas are happy to discuss what is “reasonable” behavior if you have questions.

	Download and Unpack the Lab 1 files
	Implement and Test a Hex-to-Seven-Segment Decoder
	The Collatz Conjecture
	Write and Test a Collatz Sequence Generator
	Write and Test a Module That Checks a Range of Values
	Set the fpga Configuration Mode
	Compile and Download the Project Via the Command-Line
	Compile and Download the Project Via the GUI (optional)
	Add a User Interface
	Demonstrate Your Working System

