
Sonic Security: Real-Time Audio Encryption
Design Document

Keep your sound under wraps 🎁

Sonic Security Experts:
Jaewon Lee (jl6367), Tyler Chang (tc3407), Joshua Mathew (jm5915)

1) Introduction

Sonic Security is a hardware-accelerated solution designed to provide real-time audio encryption
using the Terasic DE1-SoC platform. Our goal is to take clear, high-quality WAV files and
transform them into secure, encrypted data—ensuring that only authorized users with the
correct key can decode the original audio. The user will also have the option of recording live
audio through an INMP441 microphone module, which will then be processed in real-time to be
encrypted. By leveraging the parallel processing capability of our FPGA, we have put forward a
design that minimizes latency while delivering robust encryption performance using an AES-128
core.

2) Algorithms

1) Brief Intro to AES-128:

The Advanced Encryption Standard (AES) is a symmetric block cipher formally adopted as a U.S.
federal standard in 2001. It was the result of a multi-year NIST competition to find a successor to
the older DES cipher, which had become insecure due to its short 56-bit key. AES as standardized
has a fixed block size of 128 bits and supports key sizes of 128, 192, or 256. We focus on AES-128,
the variant with a 128-bit (16-byte) key. Despite its shorter key, AES-128 is still considered highly
secure.

byte_to_state(data) and state_to_bytes(state) in Python

AES’s design is mathematically rooted on arithmetic in finite fields. All byte-wise operations
occur in the finite field GF(28) (Galois Field of 28 elements), where operations such as addition and
multiplication are performed modulo an irreducible polynomial . 𝑚(𝑥) = 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1

2) Explanation of Each AES-128 Stage

AES-128 operates on a 128-bit block of data which is conceptually organized as a 4x4 matrix of
bytes called the state. For clarity, we can label the bytes of the state as sr,c with r, c ∈ {0, 1, 2, 3},
where r is the row index and c is the column index. The input 16-byte plaintext is initially mapped
into this state matrix in column-major order: the first 4 bytes form the first column of the state,
the next 4 bytes form the second column, and so on. Likewise, during output, the 4x4 state
matrix is flattened back to 16 bytes in column-major order to produce the ciphertext.

SubBytes (Byte Substitution): The SubBytes stage is a non-linear byte-wise substitution that
provides confusion (aka non-linearity) in AES. Each byte of the state is independently replaced
using an 8 × 8 substitution box (S-box). The AES S-box is constructed by composing two
mathematical operations in GF(28): first by taking the multiplicative inverse of the byte (except
that 0 is mapped to 0), then applying a fixed affine transformation. The result is a set fixed

permutation of the 256 possible byte values; for example, a byte value ‘0x53’ is substituted with
‘0xED’ in the AES S-box. Our team’s implementation uses a precomputed table ‘SBOX[0..255]’
containing these substitutions. Applying SubBytes means sr,c = S(sr,c) for each byte of the state.
This transformation is invertible by our inverse S-box table (which is used in decryption) which
maps each output byte back to its original value. Our Python implementation defines the S-box as
a static list of 256 byte values and sub_bytes(state) iterates through all 16 state bytes—replacing
each with the corresponding S-box entry.

S-box Tables in Python

sub_bytes(state) and inv_sub_bytes(state) functions in Python

ShiftRows (Row Rotation): The ShiftRows transformation is a cyclic row shift that provides
diffusion by permuting the byte positions in the state. The first row (r=0) is left unchanged.
However, the second row (r=2) is cyclically left-shifted by 1 byte position, the third row by 2, and
the fourth by 3. Essentially, the byte at position sr, c moves to position sr, (c-r) mod 4 after shifting (for
r>0). For example, before ShiftRows, the second row has bytes (s1,0 , s1, 1 , s1,2 , s1, 3); but after a left

rotate by 1, it becomes (s1,1 , s1,2 , s1,3 , s1,0). The inverse ShiftRows (for decryption) rotates each
non-first row in the opposite direction (to the right) by the same amount to undo the shift.

shift_rows(state) and inv_shift_rows(state) in Python

MixColumns (Column Mixing): MixColumns is a linear mixing operation that operates on each
column of our state, viewed as a four-term polynomial over GF(28). Each column (4 bytes) is
transformed by multiplying it with a fixed 4x4 matrix over GF(28). In standard AES, the
transformation in polynomial form takes a column vector (s0,c , s1,c , s2,c , s3, c)T and produces a new
column (s’0,c , s’1,c , s’2,c , s’3, c)T, which is given by:

where our arithmetic is done in GF(28) and constants 1,2,3 represent field elements (in this case:
0x01, 0x02, 0x03 in hex). In practice though, this means:

where denotes multiplication in GF(28) and ⊕ is byte-wise XOR (field addition). The fixed matrix ·
essentially mixes each byte with its neighbors in the column, which ensures that a change in one
byte of the state affects all four bytes of that column in the next round. As you can see, our Python
implementation of mix_columns(state) follows this formula—using gmul(a,b) to multiply bytes by
the constants 2 and 3 in GF(28), then XORing the results accordingly. This function also
implements multiplication via the “Russian peasant” multiplication, iteratively accumulating the
result p by XORing a into p whenever the least significant bit of b is 1, then repeatedly doubles a
(with a polynomial reduction via XOR with 0x1B when a overflows 8 bits). This accomplishes the

modulo m(x) multiplication. The inverse MixColumns (used in decryption) multiplies by the
matrix inverse, which corresponds to constants {0x0E, 0x0B, 0x0D, 0x09} in GF(28)(these are 14,
11, 13, 9 in decimal) such that the original column is recovered.

gmul(a,b) in Python

mix_columns(state) and inv_mix_columns(state) in Python

AddRoundKey (Key Mixing): In AddRoundKey, our 128-bit round key is XORed with the state.
Since XOR in binary is the group addition operation in GF(2), this stage here combines the current
data with the round’s subkey. The round key also follows a 4x4 byte matrix conceptually, derived
from the cipher key via the Key Expansion algorithm which is discussed below. AddRoundKey is
quite straightforward: each byte of the state sr,c is replaced by sr,c ⊕ kr,c where kr,c is the
corresponding byte of the round key. This is the only stage in AES that incorporates the secret
key, and it also ensures that each round’s output depends on the key. In our Python
implementation, add_round_key(state, round_key) loops through the 4x4 matrix and XORs each state
byte with the corresponding round key byte. Notice that XOR is its own inverse, so the inverse of
this function (for the purpose of decryption) would be identical to encryption.

add_round_key(state, round_key) in Python

Key Expansion (Key Schedule): AES-128 uses a key schedule to derive 11 round keys (each 128
bits) from the initial cipher key of 128 bits. The key schedule is vital for security purposes as it
ensures that each round uses a different key while being efficiently computable at the same time.
The input key is divided into four 32-bit words: W[0..3]. The algorithm then generates new words
W[i] for i=4 to 43 (since AES-128 requires 4 x (10+1) = 44 words for 11 round keys). Each new word
is either the XOR of the previous word and the word four positions back, or, for the position that
are multiples of four, a transformed version of the previous word XORed with the word four back.
More formally, for i ≥ 4:

Here, RotWord takes a 4-byte word (a0 , a1 , a2 , a3) and cyclically rotates it to (a1 , a2 , a3 , a0). SubWord
applies our AES S-box to each of the 4 bytes of its word input (just like SubBytes does to state
bytes). Rcon[j] is a round constant word for the jth round, which is defined as (Rj, 0x00, 0x00,
0x00), with Rj being an element in GF(28) that exponentes 2 to the power (j-1). In hexadecimal,
the sequence of Rj for AES-128 rounds j=1 to 10 is 01, 02, 04, 08, 10, 20, 40, 80, 1B, 36. For example,
R1 = 0x01, R2=0x02, R3=0x04, etc. where each is essentially 2j-1 in GF(28) modulo our irreducible
polynomial. These constants break symmetry between rounds, albeit in a non-repetitive yet
predictable way. In Python, the expand_key(key) function implements this schedule by starting
from the 16-byte kley and computing all round key matrices. The helper function
key_schedule_core(word, iteration) performs the RotWord, SubWord (via our handy S-box), and XOR
with the appropriate Rcon byte for the given iteration. The expanded key results in a list of round
keys round_keys[0]...round_keys[10], each of which is a 4x4 byte matrix suitable for the
AddRoundKey step in each round.

Rcon Array in Python

key_schedule_core(word, iteration) in Python

expand_key(key, rounds=10) in Python

3) Round Structure

An AES-128 encryption consists of an initial key addition, followed by 9 full rounds, and a final
round which omits the MixColumns step. We can summarize the sequence of transformation
steps as:

- Initial Round: AddRoundKey using round key 0 (the original cipher key)
- Rounds 1-9: Each round consists of SubBytes, ShiftRows, MixColumns, and AddRoundKey

(in that order) using round keys 1-9
- Round 10 (Final Round): SubBytes, ShiftRows, and AddRoundKey (using round key 10).

MixColumns is not performed in the final round. This is because after the last
AddRoundKey, there is no need for further mixing (the ciphertext is the output).

aes_encrypt_block(data, key) in Python

Decryption follows the inverse sequence, starting with the final round key and applying inverse
transformations in reverse order (AddRoundKey, InvShiftRows, InvSubBytes, etc.), with an
analogous structure of 10 rounds.

aes_decrypt_block(data, key) in Python

4) ECB Mode Implementation

Our AES-128 implementation is used in Electronic Codebook (ECB) mode of operation for
encrypting data, particularly WAV files. ECB is the simplest block cipher mode: the plaintext is
divided into independent 16-byte blocks, and each block is encrypted separately with the same
key. In the context of this project, ECB was chosen for simplicity and because it allows for
straightforward parallelization (since each block encryption is independent, multiple blocks can
be processed in parallel in FPGA design, and there is no feedback dependency between blocks).

Before encryption, data that is not an exact multiple of 16 bytes must be padded. We employ the
standard PKCS#7 padding scheme to ensure the plaintext length is a multiple of the AES block
size. In PKCS#7 padding, if n bytes of padding are required (1 to 16 bytes), each of those n bytes are
set to the value n. For example, if the plaintext is 5 bytes short of a 16-byte multiple, 5 bytes of
value 0x05 will be appended. If the plaintext length is already exactly a multiple of 16, a full 16
bytes of value 0x10 are added as padding (this unambiguously indicates padding as well). In our
Python implementation, we check the length of the final block and, if it is shorter than 16 bytes,
we compute the needed padding length and append the padding bytes. On decryption, the code
verifies the padding by examining the last byte to see how many padding bytes should be
removed, and confirming that all of them have the expected value. Proper handling of padding is
necessary to recover the exact original plaintext after decryption.

encrpyt_ecb(data, key) in Python

decrypt_ecb(data, key) in Python

In sum, our implementation in ECB mode will:

1. Split the input plaintext (e.g., raw WAV file bytes) into 16-byte blocks
2. Pad the last block with PKCS#7 if necessary to reach 16 bytes
3. Encrypt each block independently with AES-128
4. Concatenate all ciphertext blocks to produce the final output

3) System Block Diagrams

1) AES_Top

This module serves as the interface between the Avalon MM interface and the internal AES
modules, and therefore defines the register map and handles logic regarding the HW’s modes of
operation. Of importance, it controls whether the input to the downstream AES algorithm will be
streamed from an attached microphone or fed through the driver and register map. This module
also stitches together the inputs and outputs of our AES_Scheduler module with the FIFOs that
come before and after it. We will use the SCFIFO IP provided by Intel with a depth of N * 1k bits (N
= number of parallel cores instantiated) because it seems reasonable for our purposes.

2) AES_Scheduler

The main operation of AES_Scheduler is to maintain the correct ordering of blocks processed by
the AES_Core(s). The byte-wide q input for this module will be a read (using rdreq) in from a FIFO
IP and the scheduler will fill the input registers for each core in an ordered fashion. Once all core’s
input registers are filled it will synchronously send a pulse on the start. We have designed the
cores to provide an encrypted/decrypted output in a predetermined cycle count of 50, and once
that has been reached we will begin attempting to write (using wrreq) the values in the output
registers to the output FIFO. We will use counter logic to ensure order is preserved in the
byte-by-byte reading and writing with the FIFOs. This logic will also inform when the
AES_Core(s) should start in order to make sure that previously computed outputs aren’t
overwritten.

 Another important function of this module is to provide the cores with the correct round they
should be on as well as the correct round_key they should be using. Since we have designed the
stages in the core to have a deterministic cycle time, we can update the round register based on a
counter that begins once the start pulse is sent. Furthermore, since the round keys will be the
same for every 16 byte block, we have chosen to store these keys in RAM which populates the
round_key register when the round is incremented. The key expansion is done on the driver side
and this RAM that stores the keys is within the register space of the module.

3) AES_Core

The AES_Core module encapsulates encryption/decryption on a 128-bit data block.. Depending on
the mode input, AES_Core will either be in encryption or decryption mode. As described in the
Algorithms section, we decompose this core into 4 distinct stages. We use a single local 128-bit
wide register to store the intermediary results of each stage. The shift, mix, and add stages all are
transformations that can be reduced to a set of XORs and left/right shifts and thus can be done in
a single cycle. The substitution stage requires reading from a ROM which we allot 2 cycles for
latching. This module’s main logic will consist of ensuring correct data flow based on the static
scheduling and cycle time of each stage.

4) Resources

Parameters: N (number of cores)
Memory:

Round Keys: 1408 bits (RAM) → 22 M10K Blocks
Substitution Table: N * 2 * 2,048 bits (ROM) → N * 16 M10K Blocks
FIFO: N * 2* 1k bits (FIFO IP) → N * 2 M10K Blocks

Maximum:
 M10k Blocks: 445 → 4450 Kbits

Reasonable N = 10 ⇒ 202 M10K Blocks (2020 KBits of memory used)

5) Hardware-Software Interface

The interface between hardware and software will be utilizing the Avalon MM interface in the
same way that vga_ball did. We will create drivers for encryption and decryption that at first
modify the state of the register map to set the mode of operation and signal start of execution.
The driver will also then provide an api to write and read bytes to/from the HW accelerator and
the basic user-space application will simply open a WAV file and encrypt it, storing the output into
a different WAV file.

1) Register Map

We employ a single byte control register and single byte status register as the primary control
interface for the user.

start - High while the AES module should be active, will enable the scheduler to continually
schedule FIFO read/writes and start pulses to the core

input_mode - 1 for input data coming from microphone, 0 for data to be streamed from input_data
in the register map

mode - 0 for encryption mode, 1 for decryption mode

clear - When high will clear the data that exists in the FIFOs

output-empty - High when the output FIFO is empty, if read while empty data will be same as
previous read

input-full- High when the input FIFO is full, if written to while full data will NOT be overwritten
nor will the written value propagate forward

Note: The per-round-keys will have to be calculated and written to the respective portion of the
register map in the following order

 [Initial Key] [Round 1 Key] [Round 2 Key] … [Round 10 Key]

Each round key should be stored in this format: [MSB …LSB]

2) Logic Flow of File-To-File Encryption

	Sonic Security: Real-Time Audio Encryption Design Document
	1) Introduction​
	2) Algorithms
	1) Brief Intro to AES-128:
	2) Explanation of Each AES-128 Stage
	3) Round Structure
	4) ECB Mode Implementation

	
	
	
	
	
	
	
	
	
	
	
	
	
	3) System Block Diagrams
	
	1) AES_Top
	
	
	
	2) AES_Scheduler
	
	
	3) AES_Core
	

	4) Resources
	5) Hardware-Software Interface
	
	1) Register Map
	2) Logic Flow of File-To-File Encryption

