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1) Introduction 
 
Sonic Security is a hardware-accelerated solution designed to provide real-time audio encryption 
using the Terasic DE1-SoC platform. Our goal is to take clear, high-quality WAV files and 
transform them into secure, encrypted data—ensuring that only authorized users with the 
correct key can decode the original audio. The user will also have the option of  recording live 
audio through an INMP441 microphone module, which will then be processed in real-time to be 
encrypted. By leveraging the parallel processing capability of our FPGA, we have put forward a 
design that minimizes latency while delivering robust encryption performance using an AES-128 
core.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



2) Algorithms 
 
1) Brief Intro to AES-128: 
 
The Advanced Encryption Standard (AES) is a symmetric block cipher formally adopted as a U.S. 
federal standard in 2001. It was the result of a multi-year NIST competition to find a successor to 
the older DES cipher, which had become insecure due to its short 56-bit key. AES as standardized 
has a fixed block size of 128 bits and supports key sizes of 128, 192, or 256. We focus on AES-128, 
the variant with a 128-bit (16-byte) key. Despite its shorter key, AES-128 is still considered highly 
secure. 
 

 
byte_to_state(data) and state_to_bytes(state) in Python 

 
AES’s design is mathematically rooted on arithmetic in finite fields. All byte-wise operations 
occur in the finite field GF(28) (Galois Field of 28 elements), where operations such as addition and 
multiplication are performed modulo an irreducible polynomial .   𝑚(𝑥) =  𝑥8 +  𝑥4 +  𝑥3 + 𝑥 + 1
 
2) Explanation of Each AES-128 Stage 
 
AES-128 operates on a 128-bit block of data which is conceptually organized as a 4x4 matrix of 
bytes called the state. For clarity, we can label the bytes of the state as sr,c with r, c ∈ {0, 1, 2, 3}, 
where r is the row index and c is the column index. The input 16-byte plaintext is initially mapped 
into this state matrix in column-major order: the first 4 bytes form the first column of the state, 
the next 4 bytes form the second column, and so on. Likewise, during output, the 4x4 state 
matrix is flattened back to 16 bytes in column-major order to produce the ciphertext. 
 
SubBytes (Byte Substitution): The SubBytes stage is a non-linear byte-wise substitution that 
provides confusion (aka non-linearity) in AES. Each byte of the state is independently replaced 
using an 8 × 8 substitution box (S-box). The AES S-box is constructed by composing two 
mathematical operations in GF(28): first by taking the multiplicative inverse of the byte (except 
that 0 is mapped to 0), then applying a fixed affine transformation. The result is a set fixed 

 



permutation of the 256 possible byte values; for example, a byte value ‘0x53’ is substituted with 
‘0xED’ in the AES S-box. Our team’s implementation uses a precomputed table ‘SBOX[0..255]’ 
containing these substitutions. Applying SubBytes means sr,c = S(sr,c) for each byte of the state. 
This transformation is invertible by our inverse S-box table (which is used in decryption) which 
maps each output byte back to its original value. Our Python implementation defines the S-box as 
a static list of 256 byte values and sub_bytes(state) iterates through all 16 state bytes—replacing 
each with the corresponding S-box entry. 
 

 
S-box Tables in Python 

 

 
sub_bytes(state) and inv_sub_bytes(state) functions in Python 

 
ShiftRows (Row Rotation): The ShiftRows transformation is a cyclic row shift that provides 
diffusion by permuting the byte positions in the state. The first row (r=0) is left unchanged. 
However, the second row (r=2) is cyclically left-shifted by 1 byte position, the third row by 2, and 
the fourth by 3. Essentially, the byte at position sr, c moves to position sr, (c-r) mod 4 after shifting (for 
r>0).  For example, before ShiftRows, the second row has bytes (s1,0 , s1, 1 , s1,2 , s1, 3); but after a left 

 



rotate by 1, it becomes (s1,1 , s1,2 , s1,3 , s1,0). The inverse ShiftRows (for decryption) rotates each 
non-first row in the opposite direction (to the right) by the same amount to undo the shift.  
 

 
shift_rows(state) and inv_shift_rows(state) in Python 

 
MixColumns (Column Mixing):  MixColumns is a linear mixing operation that operates on each 
column of our state, viewed as a four-term polynomial over GF(28). Each column (4 bytes) is 
transformed by multiplying it with a fixed 4x4 matrix over GF(28). In standard AES, the 
transformation in polynomial form takes a column vector (s0,c , s1,c , s2,c , s3, c)T and produces a new 
column (s’0,c , s’1,c , s’2,c , s’3, c)T, which is given by: 

 
where our arithmetic is done in GF(28) and constants 1,2,3 represent field elements (in this case: 
0x01, 0x02, 0x03 in hex). In practice though, this means: 

 
where  denotes multiplication in GF(28) and ⊕ is byte-wise XOR (field addition). The fixed matrix ·
essentially mixes each byte with its neighbors in the column, which ensures that a change in one 
byte of the state affects all four bytes of that column in the next round. As you can see, our Python 
implementation of mix_columns(state) follows this formula—using gmul(a,b) to multiply bytes by 
the constants 2 and 3 in GF(28), then XORing the results accordingly. This function also 
implements multiplication via the “Russian peasant” multiplication, iteratively accumulating the 
result p by XORing a into p whenever the least significant bit of b is 1, then repeatedly doubles a 
(with a polynomial reduction via XOR with 0x1B when a overflows 8 bits). This accomplishes the 

 



modulo m(x) multiplication. The inverse MixColumns (used in decryption) multiplies by the 
matrix inverse, which corresponds to constants {0x0E, 0x0B, 0x0D, 0x09} in GF(28)(these are 14, 
11, 13, 9 in decimal) such that the original column is recovered. 
 

 
gmul(a,b) in Python 

 

 
mix_columns(state) and inv_mix_columns(state) in Python 

 
AddRoundKey (Key Mixing): In AddRoundKey, our 128-bit round key is XORed with the state. 
Since XOR in binary is the group addition operation in GF(2), this stage here combines the current 
data with the round’s subkey. The round key also follows a 4x4 byte matrix conceptually, derived 
from the cipher key via the Key Expansion algorithm which is discussed below. AddRoundKey is 
quite straightforward: each byte of the state sr,c is replaced by sr,c ⊕ kr,c where kr,c is the 
corresponding byte of the round key. This is the only stage in AES that incorporates the secret 
key, and it also ensures that each round’s output depends on the key. In our Python 
implementation, add_round_key(state, round_key) loops through the 4x4 matrix and XORs each state 
byte with the corresponding round key byte. Notice that XOR is its own inverse, so the inverse of 
this function (for the purpose of decryption) would be identical to encryption.  
 

 



 
add_round_key(state, round_key) in Python 

 
Key Expansion (Key Schedule): AES-128 uses a key schedule to derive 11 round keys (each 128 
bits) from the initial cipher key of 128 bits. The key schedule is vital for security purposes as it 
ensures that each round uses a different key while being efficiently computable at the same time. 
The input key is divided into four 32-bit words: W[0..3]. The algorithm then generates new words 
W[i] for i=4 to 43 (since AES-128 requires 4 x (10+1) = 44 words for 11 round keys). Each new word 
is either the XOR of the previous word and the word four positions back, or, for the position that 
are multiples of four, a transformed version of the previous word XORed with the word four back.  
More formally, for i ≥ 4: 
 

 
 

Here, RotWord takes a 4-byte word (a0 , a1 , a2 , a3) and cyclically rotates it to (a1 , a2 , a3 , a0). SubWord 
applies our AES S-box to each of the 4 bytes of its word input (just like SubBytes does to state 
bytes). Rcon[j] is a round constant word for the jth round, which is defined as (Rj, 0x00, 0x00, 
0x00), with Rj being an element in GF(28) that exponentes 2 to the power (j-1). In hexadecimal, 
the sequence of Rj for AES-128 rounds j=1 to 10 is 01, 02, 04, 08, 10, 20, 40, 80, 1B, 36. For example, 
R1 = 0x01, R2=0x02, R3=0x04, etc. where each is essentially 2j-1 in GF(28) modulo our irreducible 
polynomial. These constants break symmetry between rounds, albeit in a non-repetitive yet 
predictable way. In Python, the expand_key(key) function implements this schedule by starting 
from the 16-byte kley and computing all round key matrices. The helper function 
key_schedule_core(word, iteration) performs the RotWord, SubWord (via our handy S-box), and XOR 
with the appropriate Rcon byte for the given iteration. The expanded key results in a list of round 
keys round_keys[0]...round_keys[10], each of which is a 4x4 byte matrix suitable for the 
AddRoundKey step in each round.  
 

 
Rcon Array in Python 

 

 



 
key_schedule_core(word, iteration) in Python 

 

 
expand_key(key, rounds=10) in Python 

 
3) Round Structure 
 
An AES-128 encryption consists of an initial key addition, followed by 9 full rounds, and a final 
round which omits the MixColumns step. We can summarize the sequence of transformation 
steps as:  

- Initial Round: AddRoundKey using round key 0 (the original cipher key) 
- Rounds 1-9: Each round consists of SubBytes, ShiftRows, MixColumns, and AddRoundKey 

(in that order) using round keys 1-9 
- Round 10 (Final Round): SubBytes, ShiftRows, and AddRoundKey (using round key 10). 

MixColumns is not performed in the final round. This is because after the last 
AddRoundKey, there is no need for further mixing (the ciphertext is the output). 

 

 



 
aes_encrypt_block(data, key) in Python 

 
Decryption follows the inverse sequence, starting with the final round key and applying inverse 
transformations in reverse order (AddRoundKey, InvShiftRows, InvSubBytes, etc.), with an 
analogous structure of 10 rounds. 
 

 
aes_decrypt_block(data, key) in Python 

 
 

 



4) ECB Mode Implementation 
 
Our AES-128 implementation is used in Electronic Codebook (ECB) mode of operation for 
encrypting data, particularly WAV files. ECB is the simplest block cipher mode: the plaintext is 
divided into independent 16-byte blocks, and each block is encrypted separately with the same 
key. In the context of this project, ECB was chosen for simplicity and because it allows for 
straightforward parallelization (since each block encryption is independent, multiple blocks can 
be processed in parallel in FPGA design, and there is no feedback dependency between blocks).  
 
Before encryption, data that is not an exact multiple of 16 bytes must be padded. We employ the 
standard PKCS#7 padding scheme to ensure the plaintext length is a multiple of the AES block 
size. In PKCS#7 padding, if n bytes of padding are required (1 to 16 bytes), each of those n bytes are 
set to the value n. For example, if the plaintext is 5 bytes short of a 16-byte multiple, 5 bytes of 
value 0x05 will be appended. If the plaintext length is already exactly a multiple of 16, a full 16 
bytes of value 0x10 are added as padding (this unambiguously indicates padding as well). In our 
Python implementation, we check the length of the final block and, if it is shorter than 16 bytes, 
we compute the needed padding length and append the padding bytes. On decryption, the code 
verifies the padding by examining the last byte to see how many padding bytes should be 
removed, and confirming that all of them have the expected value. Proper handling of padding is 
necessary to recover the exact original plaintext after decryption. 
 

 
encrpyt_ecb(data, key) in Python 

 

 



 
decrypt_ecb(data, key) in Python 

 
In sum, our implementation in ECB mode will:  

1. Split the input plaintext (e.g., raw WAV file bytes) into 16-byte blocks 
2. Pad the last block with PKCS#7 if necessary to reach 16 bytes 
3. Encrypt each block independently with AES-128 
4. Concatenate all ciphertext blocks to produce the final output 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



3) System Block Diagrams 
 
 
1) AES_Top 
 
 
 

 

 
 
This module serves as the interface between the Avalon MM interface and the internal AES 
modules, and therefore defines the register map and handles logic regarding the HW’s modes of 
operation. Of importance, it controls whether the input to the downstream AES algorithm will be 
streamed from an attached microphone or fed through the driver and register map. This module 
also stitches together the inputs and outputs of our AES_Scheduler module with the FIFOs that 
come before and after it. We will use the SCFIFO IP provided by Intel with a depth of N * 1k bits (N 
= number of parallel cores instantiated) because it seems reasonable for our purposes. 
 

 

 



2) AES_Scheduler 
 

 

 
 
 
The main operation of AES_Scheduler is to maintain the correct ordering of blocks processed by 
the AES_Core(s). The byte-wide q input for this module  will be a read (using rdreq) in from a FIFO 
IP and the scheduler will fill the input registers for each core in an ordered fashion. Once all core’s 
input registers are filled it will synchronously send a pulse on the start. We have designed the 
cores to provide an encrypted/decrypted output in a predetermined cycle count of 50, and once 
that has been reached we will begin attempting to write (using wrreq) the values in the output 
registers to the output FIFO. We will use counter logic  to ensure order is preserved in the 
byte-by-byte reading and writing with the FIFOs. This logic will also inform when the 
AES_Core(s) should start in order to make sure that previously computed outputs aren’t 
overwritten. 

 



 Another important function of this module is to provide the cores with the correct round they 
should be on as well as the correct round_key they should be using. Since we have designed the 
stages in the core to have a deterministic cycle time, we can update the round register based on a 
counter that begins once the start pulse is sent. Furthermore, since the round keys will be the 
same for every 16 byte block, we have chosen to store these keys in RAM which populates the 
round_key register when the round is incremented. The key expansion is done on the driver side 
and this RAM that stores the keys is within the register space of the module. 
 

 

 



3) AES_Core 
 

 

 

 



 
 
The AES_Core module encapsulates encryption/decryption on a 128-bit data block.. Depending on 
the mode input, AES_Core will either be in encryption or decryption mode. As described in the 
Algorithms section, we decompose this core into 4 distinct stages. We use a single local 128-bit 
wide register to store the intermediary results of each stage. The shift, mix, and add stages all are 
transformations that can be reduced to a set of XORs and left/right shifts and thus can be done in 
a single cycle. The substitution stage requires reading from a ROM which we allot 2 cycles for 
latching. This module’s main logic will consist of ensuring correct data flow based on the static 
scheduling and cycle time of each stage. 
 
4) Resources 
 
Parameters: N (number of cores) 
Memory: 

Round Keys: 1408 bits (RAM) → 22 M10K Blocks 
Substitution Table: N * 2 * 2,048 bits (ROM) → N * 16 M10K Blocks 
FIFO: N * 2* 1k bits (FIFO IP) → N * 2 M10K Blocks 

Maximum: 
 M10k Blocks: 445 → 4450 Kbits 
 
Reasonable N = 10 ⇒ 202 M10K Blocks (2020 KBits of memory used) 

 



 
5) Hardware-Software Interface 
 
The interface between hardware and software will be utilizing the Avalon MM interface in the 
same way that vga_ball did. We will create drivers for encryption and decryption that at first 
modify the state of the register map to set the mode of operation and signal start of execution. 
The driver will also then provide an api to write and read bytes to/from the HW accelerator and 
the basic user-space application will simply open a WAV file and encrypt it, storing the output into 
a different WAV file. 
 
1) Register Map 

 

 

 



We employ a single byte control register and single byte status register as the primary control 
interface for the user. 
 
start - High while the AES module should be active, will enable the scheduler to continually 
schedule FIFO read/writes and start pulses to the core 
 
input_mode - 1 for input data coming from microphone, 0 for data to be streamed from input_data 
in the register map 
 
mode - 0 for encryption mode, 1 for decryption mode 
 
clear - When high will clear the data that exists in the FIFOs 
 
output-empty  - High when the output FIFO is empty, if read while empty data will be same as 
previous read 
 
input-full- High when the input FIFO is full, if written to while full data will NOT be overwritten 
nor will the written value propagate forward 
 
Note: The per-round-keys will have to be calculated and written to the respective portion of the 
register map in the following order 
 
  [Initial Key] [Round 1 Key] [Round 2 Key] … [Round 10 Key] 
 

Each round key should be stored in this format: [MSB …LSB] 

 



2) Logic Flow of File-To-File Encryption 
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