PacketFilter: Hardware-Accelerated Ethernet Frame
Filtering and Switch

CSEE W4840 - Embedded Systems - Spring 2025

Michael Grieco
Adwyck Gupta

Harry Zhang
{mag?2346,ag5016,hz3000}@columbia.edu

1 INTRODUCTION

As modern computation requires increasingly higher speed
networks to handle ever growing volumes of data, efficient
use becomes critical. General-purpose software network
switch are often ill-suited for the real-time filtering and rout-
ing of network packets due to their sequential nature and
multitasking responsibilities. Hardware-accelerated network
interface controllers, such as SmartNICs, aim to address these
bottlenecks by offloading packet processing tasks to dedi-
cated logic near the data source.

In this project, we aim to implement a high speed Ethernet
switch as an FPGA-based SoC implemented with an Altera
Cyclone V chip on the DE1-SoC board. Our primary design
routes frames from four ingress ports to four egress ports
by calculating the destination port using the Ethernet frame
headers. The switch integrates with drop logic that allows the
system to drop frames that have been waiting for too long or
those it deems invalid with basic processing. To complement
that, we implement backpressure through the switch with
the AXI-Stream protocol such that stalls ripple throughout
the system and queues never overflow.

We modularize the design to improve the reusability and
reconfigurability at different granularities. To verify the cor-
rectness and measure the performance, we wrap a hardware-
based testbench around it that generates Ethernet frames at
a configurable rate.

2 SYSTEM ORGANIZATION
2.1 Protocols

The main functional design has four ingress ports that func-
tion as an AXI-Stream data sink and four egress ports that
function as an AXI-Stream data source. All ports use the data
(16-bit), valid, and last signals from the source and the ready
signal from the sink. The system can handle delays between
frames and as such, will exert backpressure by de-asserting
its ready signals.

The switch’s main function is to validate the Ethernet
frames and route the ingress frames to the appropriate egress
ports based on their header values. It is able to validate and

route streams of data that follow the Ethernet 2.0 standard,
as Fig. 1 shows.

One assumption is that all packets have valid checksums.
We will not increment an internal checksum to validate the
frame check sequence (FCS) at the end of the frame. However,
if this were a requirement, the system could easily calculate
a checksum and validate it at the end of the frame. This
integrates nicely with the existing drop logic as this new
calculation unit could drive a drop signal which would trigger
the same logic as with the timeout.

2.2 System distribution

Fig. 2 shows a top-level view of the system, including inter-
faces between hardware and software along with the various
hardware blocks we will implement. The primary functional
part is the filter around each ingress port and the switch fab-
ric to route frames. The generator and receptors are part of
the hardware-based test harness which can generate frames
much faster than via software.

To modularize the design and improve the effectiveness
of verification, we break down the system (excluding the
test harness) into the input filter and the switch. The input
filter takes in a raw stream of data and computes sideband
information so that the input switch can route it to the appro-
priate egress port. This way, the switch is only responsible
for scheduling frames with a pre-determined destination and
is not responsible for validating packets. The streams use the
AXI-Stream (AXIS) protocol with the data, valid, last, and
ready signals. The sideband information is implemented on
a 2-bit destination signal, which is an optional extension of
the AXIS protocol. This sideband information is only present
in the interface between the filter and the switch. As a result,
the main design implements an interface whose signals are
entirely related to the stream structure, not the contents of
the stream.

3 SYSTEM BREAKDOWN

This section describes the various blocks in our system.

M. Grieco, A. Gupta, H. Zhang

Frame

Preamble (7B) SFD (1B)
OxAA* 7 O0xAB

DST_MAC (6B) SRC_MAC (6B) |TYPE (2B)| PAYLOAD (46B - 1500B) | FCS (4B)

if TYPE < 0x5DC

becomes length
if TYPE > 0x600

becomes ethertype
otherwise the frame is invalid

Figure 1: The applicable format of Ethernet frames our system can process.

(1]
HPS
|_rw AMM_rw irq AMTJW AMM_|N|J ‘{
MM-LrY AXs [AXIS_d AXIS 4“‘“—“’“
frame_generator_0 ¢ : T frame_receptor_0 | |
m\m\ll_|m ' : _|rw
AXIS | AXIS_d | AXIS
AMM_'W_—0 frame_generator_1 §————— < T frame_receptor_1 LW
v | frame_filter frame_switch '
AXIS! AXIS_d \ AXIS
— frame_generator_2 T < + frame_receptor_2
AXIS AXIS_d L AXIS
—0¢ frame_generator_3 #——— r———— ——0 frame_receptor_3
\ Main J
functionality e

Figure 2: The breakdown of our system into hardware components that receive commands from software via the
Avalon memory-mapped register interface. All hardware modules talk with the AXI-Stream protocol.
Legend: filled dot is the producer; hollow dot is the consumer; AMM_rw is a read- and write-able Avalon
register interface; AXIS is the AXI-Stream protocol with valid, 16-bit data, last, and ready signals; AXIS_d
is the same as AXIS but with a two-bit dest signal.

3.1 Input filter

The function of the input filter is to extract sideband infor-
mation for each Ethernet frame whilst also dropping frames
which meet specific conditions. The input filter has four iden-
tical units, one for each ingress port. We elected to aggregate
these units into one system-level submodule to simplify the
register interface. Fig. 3 shows the filter structure for a single
ingress port; the following description is with respect to a
single one as well. We broke down the filtering into various
state machines who coordinate to activate other units and
control writing to and reading from input queues. This way,
each piece has a more focused computation, and they can

interact via signal passing instead of aggregating states into
one large state machine.

Each of these blocks communicate with some variation of
the AXI-Stream protocol. The data field represents frame and
sideband data that is written to buffers. The valid and ready
bits perform handshaking between submodules; though we
omit the ready bit from the consumer state machines because
they have more deterministic behavior throughout a frame.
All drop statuses are passed as a bit in the sideband signal,
tuser.

PacketFilter: Hardware-Accelerated Ethernet Frame Filtering and Switch

Each ingress port has a corresponding enable bit in the
software-writeable register, ingress_port_mask. If the soft-
ware ever writes a 0’ to the ingress port’s enable bit, the
input scanning units mask all activity on the input and the
buffers drop a frame if it is currently ingressing. However,
the frames that have already been stored in the queues are
allowed to proceed through the system.

3.1.1 Input scanning. Each filter has an input state machine
(input_fsm) which tracks progress through the stream rela-
tive to the Ethernet frame structure. It activates the compu-
tation units when their target field is active. Fig. 4 shows the
state diagram. There are two recovery states, FLUSH_FRAME
and WAIT_DROPPED, which allow the input FSM to return to
idle when a frame ends prematurely (i.e., the last flag is as-
serted before getting through Ethernet headers) or when the
processing units detect an invalid field. In the latter, the input
FSM is also responsible for masking the frame (by masking
the valid signal) that is still arriving even though it has been
deemed invalid.

Additionally, the input state machine uses an enable signal
from the filter’s register file. If software writes a ’0’ to the
ingress port’s bit, the state machine masks all inputs so the
ingress port is inactive.

The destination calculator (dest_calc) maps the destination
MAC field received in the frame to a two-bit sideband field
to pass alongside the stream to the switch. For simplicity,
we implement this by taking the two least significant bits
of the MAC address. However, in the future, this could be
expanded to support more meaningful computations. Sim-
ilarly, the type field validation (type_field_checker) simply
verifies that the two bytes in the ethertype field are not in the
invalid range (i.e., between @x5DC and 0x600). It can extend
to perform more thorough checking or activate a specific
processing mechanism if it detects a recognized Ethertype.
Both those units output an invalid signal which indicates to
the input state machine to mask the current stream.

3.1.2 Input buffering. There are two queues that store data
for the ingress frames. The frame buffer buffers the packets
received from the ingress stream while the sideband FIFO
stores metadata about each stream. Section 5 details the
required number of memory blocks to implement these FIFO
queues. This section details the organization of the allocated
five blocks of memory. The frame FIFO maps one ingress
AXIS packet to one entry in the FIFO. The memory blocks on
the DE1-SoC FPGA chip store 20-bit addressable words. Since
each ingress packet is 16 bits, we elected to pad it with four
’0” bits instead of splitting packets across multiple addresses.
In the future, we could implement parity bits for integrity
checking; this is a crucial function for network switches.
The frame buffer stores many 16-bit packets for each frame
in a FIFO that spans four 512x20 blocks of memory; it can

store a total of 2048 twenty-bit words (thus the addresses
are eleven bits wide, which extend to twelve to allow for
simultaneous reading and writing). We chose four blocks
to be able to store more than two full frames while keep-
ing the number as a power of 2 for address simplicity. In
storing more than two full frames, we can accommodate
any backpressure that the egress puts on the filter, even if
it is within a single frame transmission. To avoid having to
put intra-frame backpressure on the input filter’s ingress
port, we use an almost full signal on the frame FIFO that it
asserts when it cannot store a full frame. Therefore, when
the FIFO broadcasts not almost-full, we can be certain that it
can buffer the worst-case size frame.

The frame FIFO also supports dropping frames via con-
trollable cursors. When a new frame starts, the frame buffer
latches the current write address. If it sees that the global
drop signal is asserted (from the scanning section), it resets
the write pointer to the saved address, which is at the tail
of the previous frame. One assumption is that a frame will
not be dropped if the filter is already scanning the payload.
This is reasonable because all drop logic computes over the
header fields. Hence, so long as frames do not issue to the
switch until the input state machine asserts the payload scan
signal (scan_payload), a frame will never be dropped during
its payload. With this assumption, we do not have to worry
about the case where resetting the write pointer to the head
of a frame already being read would push the write pointer
beyond the read pointer (thus making the FIFO appear almost
full even though it has no valid data).

The sideband buffer stores several 20-bit queue entries for
each frame in a single 512x20 block of memory. The first
entry stores the computed destination (two bits) along with
the address of the head of the frame (twelve bits). To be able
to reproduce the AXIS last signal when issuing to the switch,
the requestor needs to know how many 16-bit packets are
in the frame. The maximum number is 759 as mentioned in
Section 2.1, so this counter must be 10 bits wide. The buffer
internally increments this count based on status signals from
the input state machine. As with the frame buffer, there must
be drop logic to recover when the frame is determined to be
invalid.

3.1.3 Switch requests. As the two FIFO queues are separate,
they need synchronization to ensure that the next frame’s
sideband entries are read only once the current frame has
cleared the input filter. The switch requestor (switch_requestor)
takes care of this by matching sideband information to the
stream structure. Fig. 5 shows its state machine. It first waits
for the sideband buffer to have an entry and reads the first
one (which contains the destination port and queue head).
With the queue head, it will set the read pointer in the frame
FIFO to point to the head of the corresponding frame. It

avalon
memory-mapped €——>|
register interface

Register file
0x0: ingress mask

M. Grieco, A. Gupta, H. Zhang

destt1 :0], dest_

€
type_field_checker | |invalid dst_mac

- destination port
- FIFO head

(_._l A H
ren | tdest(1:0]

- packet length

'
'
'
'
'
'
i

Ingress port i-1 enable
, lng_ress port 1 : E frame_buffer E tdata, tvalid \“ -
tdata[15:0] | /_Y_\ > - raw data bits ; : >
tvalid ! i . - ethernet headers rptr{11:01, ren - '
;2; : kmDUt_fsnI: . e full | Wptr[11:0], en switch_requester tready
: - keep track o : q | FIFO (2048x20) |) : - mgtch frame and
: > frame frame status A ' sideband FIFO
< : - broadcast [H . Y - latch sideband
tready | activation signals |< - drop frame when expired tlast
: v frame_head[11:0] ! - assert last when read
: < : > cursor hits next entry /|
' dest_calculator alid | sideband_buffer |
B Ll

FIFO (512x20) i

Figure 3: The connections within the input filter.

valid&ready, data = 0XAAAB DST_MAC
- assert scan_frame

3 x valid&ready SRC_MAC
xAAAA and scan_dst_mac

_f - assert scan_frame
_dst lastgvalidaready | 2Nd Scan_src_mac
lastavalidaready

FLUSH_FRAME
- internal drop after
last

PAYLOAD
- assert scan_frame
and scan_payload

TYPE
- assert scan_frame
and scan_type-_field

last&validaready
1 x validaready

asserted
last&valid&ready drop_current
'WAIT_DROPPED

Figure 4: The input state machine diagram.

sideband queue
not empty READ_SIDEBAND
- read sideband

dest/pointer

read valid

INIT_FRAME_FIFO
- set read pointer in
frame FIFO

INIT_REQ
- make first request
- increment timeout

company

timeout

second to last granted

sideband queue
not empty

READ_LENGTH
- read sideband
frame length

CONT_FRAME

Figure 5: The request state machine diagram.

can then make a request to the switch with a corresponding
destination; thus allowing the switch to match the stream
request to an egress port.

After making the request and receiving a grant, the re-
questor must find the length to be able to accurately recreate

the AXIS last signal. Whether or not it has this value, it
counts the number of packets it has issued so that when the
length is available, it can compare the issued count. After
latching the length, it continues to send packets. Once the
issued count is one less than the frame length, it asserts the
last signal with the next packet.

One feature we will integrate to improve global through-
put and prevent starvation is a frame request timeout. In
the initial request state, the requestor increments a count
while waiting. If it reaches a threshold, it drops the frame
request returns to the request state to start a request with the
next frame. This timeout mechanism is specifically helpful
to avoid deadlock. For example, if all ingress ports make a
request to an egress port exerting backpressure, they will all
stall with that frame in the head of the queue (thus stalling
subsequent frames). One solution for this would be to imple-
ment separate queues for each egress port. However, this has
several disadvantages. The separate queues would double the
memory footprint of the filter from 4 blocks per ingress to 8
to be able to store a full-sized Ethernet frame for each egress
port (2 blocks can store between 1 and 2 frames). Addition-
ally, this would enforce that we buffer enough packets before
the egress port is actually calculated. After calculation, the
centralized buffer would have to flush to the selected egress
port. This would create the same issue of having a bottle-
neck on an ingress port that is susceptible to backpressure.
As a result, the input filter drops frames that have been at
the head of the queue for a number of cycles equivalent to
issuing a maximum length ethernet frame.

PacketFilter: Hardware-Accelerated Ethernet Frame Filtering and Switch

3.2 Frame switch

The Frame Switch is the nexus that joins the four filtered
ingress streams to the four egress ports. As the destination,
last and valid signals are side banded, that makes it easier
for the switching fabric to handle crossing logic. It has the
following organization:

3.2.1 Egress Selection Network. a 4-to-1 multiplexer plus a
match unit that, every cycle, looks only at the ingress port
indicated by a two-bit request pointer (next_rr) coming from
that egress-port’s scheduler. If that ingress word is marked
valid and its tdest equals the current egress index, the word is
accepted and forwarded; otherwise the selector immediately
reports miss back to the scheduler.

3.2.2 Per-egress Round-Robin Scheduler. a finite-state ma-
chine that stores the pointer next_rr. While in SEND it keeps
the pointer frozen so the entire frame is drained from a single
ingress port; when it observes tlast = 1 it cyclically incre-
ments the pointer to the next ingress port and returns to
IDLE. This implements fair, frame-granular arbitration with
no head-of-line blocking.

3.2.3 Cross-bar Data Path. four independent 4x16-bit multi-
plexers controlled by the four scheduler outputs (select[1:0]).
Because all ports share the same word width, the cross-bar
is purely combinational and adds only one 4-LUT level of
latency per data bit.

3.24 Back-pressure Propagation. each egress port’s tready
is fanned backwards through its scheduler to the selected
ingress port’s tready. Consequently, when a receiver stalls
in the middle of a frame, only the corresponding ingress
port is paused, preventing FIFO overflow elsewhere in the
switch. Depending on experimental results, we may also
have to implement FIFO queues before each egress port. The
purpose would be to alleviate other egress ports if only one
is stalling as discussed with backpressure in the input filter.

3.3 Testbench

The testbench is implemented in software running on the
Hard Processor System (HPS) and is responsible for verify-
ing the functionality and performance of the Ethernet frame
filtering switch. It communicates with the hardware system
using Avalon memory-mapped (AMM) interfaces to config-
ure modules, generate test cases, and validate output data.
The testbench software performs several key roles. It first
configures the hardware-based frame generators by writ-
ing to their control registers through the AMM interface,
setting parameters such as payload size, destination MAC
address, and EtherType. Once the configuration is complete,
the software initiates frame transmission by signaling the
frame generators. As frames propagate through the system,

the testbench monitors the output by reading from the frame
receptors.

To validate correctness, the software compares the ex-
pected and actual outputs. This includes checking that the
payload checksums computed by the frame receptors match
those generated by the frame generators. It also verifies that
each frame is routed to the correct destination port based
on its MAC address, and confirms proper drop behavior for
frames with invalid Ethertype values or those that exceed
the configured timeout threshold. This software-driven test-
bench enables flexible and comprehensive testing of both the
functional behavior and performance characteristics of the
system. Because the frame generation is done in hardware,
we can eventually evaluate the speed of our modules with-
out having to interact with DDR4 or SDRAM blocks which
would add latency and complexity to our testing.

4 ALGORITHM

Our switch Round-Robin Scheduler uses for each egress port.
Round robin satisfies two important constraints in network
switching. The first is fairness. The scheduler serves any
ingress in turn, and each ingress port relinquishes the grant
following one frame transmission (or the input filter drops it
after reaching the maximum frame length). Hence no single
source can indefinitely starve other ingress ports from the
same ingress port. Additionally, this deterministic maximum
length provides a deterministic latency to each port. In the
worst case, an ingress port must wait for three frames (with
four ports) before the pointer wraps around. This assumes
no backpressure in the egress ports. However, the request ex-
piration functionality achieved with the input filter supports
the switch’s determinism once more.

4.0.1 Implementation. Each egress FSM keeps a 2-bit pointer
next_rr that identifies “which ingress to try first”. If the des-
ignated ingress has a valid word and its tdest matches the
current egress port, the whole frame is accepted. When the
tlast word passes, the FSM increments next_rr, and the pro-
cess repeats as in Figure 3.

Should more differentiation be required in the future the
pointer update can be swapped for a priority or weighted-RR
table without touching the data path.

4.1 Arbitration Simulation

To validate our Round-Robin scheduling logic in isolation,
we implemented a software simulation that mirrors the ar-
bitration behavior of our hardware switch. This model acts
as a proof-of-concept to ensure that fairness, frame-level
granularity, and ingress contention are handled as expected
before RTL implementation.

We wanted to :

1) Emulate the behavior of each egress FSM.

M. Grieco, A. Gupta, H. Zhang

egress_mask——»|

next_valid_in[1:0]
—_———— >

valid, last

next_rr[1:0]

egressy
scheduler

select[1:0]
egressX_valid, egress¥_last

egress0_ready

ready

Figure 6: The Scheduler Interface

2) Verify that each egress port grants access to at most

one ingress at a time.

3) Confirm that arbitration strictly respects frame bound-

aries (tlast) before switching ingress sources.

We defined following C structs to model the ingress state

and arbitration output

typedef struct {
char wvalid;
word
char last; // Whether this word is
the frame
char dest; // Which egress port
targeting

} axis_input;

typedef struct {
axis_input ingress [4];

} switch_input;

typedef struct {

char grant[4]; // Which ingress was granted
char select;
the egress port

} switch_output;

Each egress port keeps track of:

// Whether ingress has a valid

the word is

the end of

// Which ingress was connected to

1) A round-robin pointer (next_rr) indicating the next

ingress to try.

2) A grant lock (cur_grant) which holds an ingress index

until tlast is observed.

egress_port):
locked:
if ingress[cur_grant].valid and .dest

function arbitrate (input,
if cur_grant[egress] is

egress:
grant it
if .last == 1:
RR pointer

release lock,

else:
for i in RR order:

if ingress[i].valid and .dest ==

egress:

lock it

== 1:

grant i,

if .last

advance

unlock immediately

Above is the Psuedo-Code for the Arbitration logic imple-
mentedfor simulation.

We simulated 5 clock cycles with the following test sce-
nario:

Ingress 0 and 1 both send frames to Egress 0 (creating

contention).

Ingress 3 sends a short 1-word frame to Egress 2.

Ingress 2 sends a multi-word frame to Egress 1 starting in
Cycle 1.

Cycle | Ing0(v,L,d) | Ing1(v,1,d) | Ing2(v,],d) | Ing3(v,1,d)
0 100 100 000 112
1 110 110 101 000
2 000 000 101 000
3 000 000 101 000
4 000 000 111 000

Table 1: Test_vector Table

After running the Simulation

The results show:

Ingress 0 was selected first for Egress 0 due to pointer
ordering.

Ingress 1 waited 2 cycles before being able to transmit
(shown in waiting stats).

Egress 1 FSM locks onto Ingress 2 and completes its 4-word
frame across multiple cycles, as in Figure 4.

5 RESOURCES

The Cyclone 5CSEMAS5 has 397 ten-Kb blocks of BRAM.
Each block has 512 twenty-bit words. As mentioned in Sec-
tion 3.1.2, we extend our data words to twenty bits to fit
nicely into memory. Each frame has a maximum size of 759
16-bit words. We then decided to use four blocks in each
ingress port which allows the system to buffer at least two
full-sized frames. Specifically, the four blocks can store 2.7
full-sized frames, or many smaller frames. The four blocks
create an addressable space of 2048 words, which requires 11
bits of address. For the sideband FIFO, we use a single BRAM
module.

The chip has a total of 397 blocks. Using five total blocks
for each of the four ingress ports results in a total usage of

PacketFilter: Hardware-Accelerated Ethernet Frame Filtering and Switch

File Edit View Search Terminal Help
@microd3 pocl$ gcc poc.c -0 poc
@microd3 pocl$./poc

last=1, d
last

0 (waiting
100 0]

[0 06 0]

now 1.
0 (waiting

total: 1)

total:

Figure 7: Arbitration Simulation Result

twenty blocks. This is just over five percent usage for BRAM.
We will be able to present more specific statistics for register
and DSP usage when we implement the design.

6 HARDWARE-SOFTWARE INTERFACES

Each of the modules host the agent side of the Avalon memory-
mapped interface. They each have read-write registers which
are addressable by an eight-bit address. Table 2 shows the
base addresses for each of the modules. Otherwise, all com-
munication logic is directly via AXIS interfaces between the
modules as Section 3 discusses.

6.0.1 Frame generator. For the Frame Generator module
is responsible for constructing Ethernet frames based on
control data received from the software testbench via the
Avalon memory-mapped interface. This control data includes
parameters such as payload size, destination Mac address,
and packet type. Once the configuration is received, the
module assembles an Ethernet frame following the format
outlined in Figure 1.

Each frame includes standard Ethernet fields such as the
preamble, destination and source Mac addresses, EtherType,
payload, and frame check sequence. The source MAC address
is selected dynamically based on which of the four Frame
Generators instances is transmitting the packet, allowing
for the simulation of traffic from multiple sources. After

Address | Module type Instance name

offset

0x0000 frame_filter Ethernet frame filter

0x1000 frame_switch Ethernet frame switch

0x2000 | frame_generator | Ethernet frame generator
0

0x2100 | frame_generator | Ethernet frame generator
1

0x2200 | frame_generator | Ethernet frame generator
2

0x2300 | frame_generator | Ethernet frame generator
3

0x2400 | frame_receptor Ethernet frame receptor
0

0x2500 | frame_receptor Ethernet frame receptor
1

0x2600 | frame_receptor Ethernet frame receptor
2

0x2700 | frame_receptor Ethernet frame receptor
3

Table 2: Base addresses in the system.

construction, the frame is transmitted to Frame filter module
through the AXI-Stream interface.

M. Grieco, A. Gupta, H. Zhang

Address | Read/ | Name Description Address | Read/ | Name Description
offset Write offset Write
0x00 RW Check_ | Readable register for test- 0x00 RW Check_ | Readable register that
Sum_ benching purposes Sum_ stores the checksum re-
Register Register | sult for testbenching pur-
Table 3: Register map for frame generator poses
0x04 RW DST_ Readable/Writable regis-
Check_ | ter that stores the result
Register | of destination compari-
Address | Read/ | Name Description son for testbenching pur-
offset Write poses
0x00 RW ingress_ | Enable signal for ingress Table 6: Register map for frame receptors
port_ ports (active-high)
mask

Table 4: Registers for the frame filter module.

Address | Read/ | Name Description

offset Write

0x00 RW egress_ | Enable signal for egress
port_ ports (active-high)
mask

Table 5: Registers for the frame switch module.

In addition to frame generation, the module also performs
a basic checksum calculation over the payload. This check-
sum is stored in a readable register, which can later be ac-
cessed and compared by software to verify data integrity.
This helps validate correct transmission and detect potential
errors during testing.

6.0.2 Frame filter. The frame filter has one register as per
Table 4.

6.0.3 Frame switch. The Frame Switch exposes just one read-
/write register: egress_mask as per Table 6.

6.0.4 Frame receptor. For the Frame receptor module, as we
described in the Frame Generator module that it will perform
a basic checksum of the payload after the Ethernet frame
passed from the network switch module, it will also store
the information in a software readable register that we will
be using during testbench to validate the data integrity and
accuracy.

Furthermore, the frame receptor is the final step before
checking the data integrity (via the checksum), it also verifies
the correctness of the routing by checking the destination
mac address matches a pattern that it stores in a software-
writable register.

REFERENCES

[1] Wikipedia contributors. Ethernet frame — wikipedia, the free encyclo-
pedia, 2024. Accessed: 2025-04-18.

	1 Introduction
	2 System organization
	2.1 Protocols
	2.2 System distribution

	3 System breakdown
	3.1 Input filter
	3.2 Frame switch
	3.3 Testbench

	4 Algorithm
	4.1 Arbitration Simulation

	5 Resources
	6 Hardware-Software interfaces
	References

