
Pac-Man Design Document

Caiwu Chen (cc4786), Tz-Jie Yu (ty2534), Emma Li (eql2002), Haoming Ma (hm3070)

CSEE4840 Spring 2025

Contents

1. Introduction
2. A Block Diagram
3. A Description of the Algorithms
4. Resource budgets
5. Hardware/software Interface

1 Introduction

In our project, we re-create the classic arcade game Pac-Man on an FPGA platform,
DE1-SoC Board, and using the VGA monitor. Pac-Man is a game in which the player
navigates a maze, aiming to consume all the pellets while avoiding being caught by roaming
ghosts. Our implementation separates responsibilities between hardware and software:
the FPGA is responsible for rendering the game’s graphics to a VGA display, while the
software controls the game logic and communicates with the hardware via a device driver.
User input is provided through a USB game controller (keyboard with arrow keys), enabling
real-time control of Pac-Man's movement.

2 System Block Diagram

The block diagram includes all major software and hardware components. Components
such as the game logic, input handler, and device drivers reside in software, while
hardware includes a sprite engine, tilemap renderer, audio module, and VGA controller.
Communication occurs via memory-mapped registers on the Avalon Bus.

3 Algorithms

Game logic:
The game begins when the player presses the Start button. The player controls a character,
the Pac-Man, that continuously moves in the direction of its mouth. Movement can be
changed using the directional pad, which is the major input during gameplay.

As the character moves over a pellet, it is eaten, removed from the game board, and the
player’s score increases. The current score is tracked in software and updated on the
display through a dedicated memory-mapped register. Score digits are rendered as sprites
on the VGA display using an 8×8 pixel font. The objective is to eat all the pellets in the maze.

Ghosts are non-playable enemy sprites that move around the maze according to
predefined or randomized patterns. The four ghosts in the game all use Chase mode,
Ghosts will chase after the player according to their own logic. If a ghost collides with the
player, the game ends.

The game ends when either

- The player eats all the pellets (win condition), or

- The player collides with a ghost (loss condition)

To restart the game after completion, the player presses the Start button again.

Graphics rendering:

Our current design uses SystemVerilog to implement and render all visual components of
the game, including the maze, player sprite, ghosts, pellets, and score digits.

Static elements such as the maze walls, pellets, and text (e.g., "SCORE") are rendered using
a tile-based rendering system. The VGA display is divided into a fixed 8×8 pixel grid, and
each grid cell displays a predefined tile stored in on-chip ROM. A tilemap stored in block
RAM defines which tile appears at each position on screen. Each tile's appearance is
determined by an indexed pattern with associated color values.

Pellet presence is tracked using a dedicated Pellet RAM, where each row of the maze
corresponds to a 32-bit word. Each bit represents the presence or absence of a pellet at a
particular horizontal position—bit 0 is the right-most pellet, and bit 31 is the left-most. The
software updates this RAM by writing to memory-mapped registers, enabling real-time
dynamic updates to the pellet layout during gameplay.

Sprites, including Pac-Man, ghosts, and score digits, are stored in on-chip Block RAM or
ROM. These sprites are rendered using a custom sprite engine, which reads sprite
descriptor data (e.g., x/y position, frame index, visibility) and draws active sprites during
VGA scanline generation. This approach enables layering of moving sprites over a static
tilemap background with minimal flicker and latency.

Sound Generation
We include pre-sampled sound effects (e.g., pellet chomp, ghost eaten, death). These are
stored in ROM and played using a PWM-based audio module that drives a connected
speaker. Sounds are triggered via memory-mapped registers.

4 Resource Budget
One of the primary consumers of on-chip memory in our Pac-Man implementation is
graphical data, including static tiles and dynamic sprites. Due to the limited amount of
on-chip RAM on the DE1-SoC FPGA (less than 512KB), special attention is paid to the size
and format of these resources.

The following table provides a breakdown of estimated memory consumption for all tiles
and sprites used in the game. Each image is represented as raw RGB data (8 bits per
channel) and stored in Block RAM (BRAM) or ROM on the FPGA for fast access during
scanline rendering.

Category Name Graphics Size (bits)
Width x
Height x
Channel x
Bit-depth

of images Total size
(bits)

Sprite Pac-Man

16 x 16 x 3 x
8

2 12288

Sprite Ghost

16 x 16 x 3 x
8

4 (without
animation)

24576

Tile Borders

8 x 8 x 3 x 8
6

9216

Tile Pellets

8 x 8 x 3 x 8 1 1536

Tile Letters

8 x 8 x 3 x 8 5 7680

Tile Numbers

8 x 8 x 3 x 8 10 15360

Sound Music - - -

Total

In addition to graphical assets, the display system also consumes a small portion of on-chip
memory for real-time game state storage, such as the tile map layout, pellet presence, and
sprite descriptors. These structures are compact but require frequent access during
gameplay and must be stored in BRAM for low-latency reads. The estimated sizes are as
follows:

● Tilemap RAM: 40 × 30 tiles × 1 byte = 1.2 KB
● Pellet RAM: 30 rows × 4 bytes = 120 bytes
● Sprite Descriptors: 5 sprites × 8 bytes = 40 bytes

Total Bitmap Memory Usage: ~1.4 KB

This is a map we have designed for a long time, and we may make some changes later. Thus,
the combined memory usage for both image assets and display control data remains well within
the on-chip memory budget of the DE1-SoC FPGA, with sufficient headroom for additional
assets or logic.

5 The Hardware/Software Interface
The software is responsible for maintaining the overall game logic, including player input
handling, movement updates, collision detection, score tracking, and game state transitions. It
receives input from the keyboard (or gamepad) and processes this information to update the
positions and states of Pac-Man, ghosts, pellets, and other game elements.

These updates are communicated to the graphics hardware via a memory-mapped interface.
The hardware rendering system reads this data in real-time and generates the corresponding
video output signals. Specifically, it renders all visual components—including the static maze
background, dynamic sprites, pellets, and text—into VGA signals, which are then displayed on
an external monitor.

The address map used for communication between software and hardware is structured as
follows:

Base Address Name Description

0x0000 - 0x04AF Tilemap RAM Tile index for 40 * 30 grid

0x1000 - 0x101E Pellet RAM 30 rows * 32 bits pellet
state

0x2000 - 0x2027 Sprite Descriptors Descriptors for sprites,
including position,
orientation. Max 5 sprites
(1Pac-man, 4 ghosts), 8B for
each.

0x3000 Score Register Current score (16 bits)

0x4000 Control Register Signals for
start/reset/pause/display
sync etc.

0x5000 Reserved Register Reserved for future use.

Each region is aligned to 4KB (0x1000) for future-proofing and easy hardware decoding.

Tilemap RAM

● Description: A 40 × 30 grid where each byte represents a tile index, used for static
background elements such as maze walls, pellets, score labels and number files.

● Tile size: 8 × 8
● Data format:

○ Each byte: uint8_t tile_index
○ Example: Writing 0x0A to address 0x0022 sets the tile at row 1, column 2 to

index 0x0A.
● Access: Software initializes the map at the beginning.

Pellet RAM
● Description: Tracks presence of pellets in each row.
● Data format:

○ Each row is a 32-bit work (uint32_t), each bit indicates one pellet.

○ Bit 0 ⇒ right most pellet.
● Access: Software clears a bit when Pac-Man eats a pellet.

Sprite Descriptors
● Description: Each sprite has a 8-byte descriptor, controlling its position, animation frame

and visibility.
● Data format:

○ Byte 0: X position
○ Byte 1: Y position
○ Byte 2: Frame (for animation)
○ Byte 3: Visibility (0 = invisible, 1 = visible)
○ Byte 4: Direction (0 = up, 1 = right, 2 = down, 3 = left)
○ Byte 5: Type (1 ~ 5 for ghosts, 0 for Pac-man)
○ Byte 6, 7 Reserved

Score Register
● Description: Stores current player score, up to 65535
● Format: 16-bit unsigned integer
● Access: Written by software after score update

Control Register
● Description: Provides software control signals to manage running status of hardware.
● Format:

○

Bit Name Function

0 Start Start or resume the
game

1 Reset Reset game state

2 Pause Pause the game

3 VBLANK_ACK Acknowledge frame
sync

4 Game_Over Game over flag

	1 Introduction
	2 System Block Diagram
	3 Algorithms
	Game logic:
	Graphics rendering:
	Sound Generation

	4 Resource Budget
	5 The Hardware/Software Interface
	Tilemap RAM
	Pellet RAM
	Sprite Descriptors
	Score Register
	Control Register

