Monkey Madness Design Doc

Jake Torres (jrt2170), William Freedman (wrf2107)
Kyle Edwards (kje2115), Sadie Freisthler (srf2156)
Madeline Skeel (mgs2189)

CSEE 4840 Embedded System Design - Spring 2025

April 19, 2025

Introduction

The motivation of our project is to create a fun arcade game at the intersec-
tion of the interests of our group in interesting hardware devices, silliness,
and computer graphics. Our fascination with the trackball hardware device,
as shown in Figure 1, inspired us to design an arcade console and a video
game that uses the trackball as its main input source.

Figure 1: Trackball

In order to find a game that best utilized the trackball input without
requiring a full 3D environment, we took inspiration from games like Su-
per Monkey Ball, Marble Madness, and the bonus stages from some of the

S = = HE

@ o

e T ——

7| 3
@ Eoolk oo

AR
—

Figure 2: Super Monkey Ball & Mar-
ble Madness Figure 3: Bonus Stage, Sonic Mania

old Sonic games, which all feature spheres moving around perceived three-
dimensional planes but are actually rendered in two dimensions. This allows
our game to use the full range of motion of the trackball while keeping the
scope manageable, and we thought the trackball would pair perfectly with
this style of gamel!

For this project, we would turn the FPGA into an arcade machine, allow-
ing for reset capabilities, video output, input from buttons, and a trackball,
and any other features we encounter as necessary for an arcade machine. We
would then have to design a device driver for our trackball and any buttons
we use. Lastly, we would be designing our game from scratch using the pre-
viously mentioned games as inspiration, all of which are shown in Figures 2
and 3.

Block Diagram

audio

> no audio components at the moment

vga_marble

> marble position will be used to
determine what tiles to draw
> tile map + color map used to determine what color to draw at each pixel

screen
Avalon Bus

> marble radius

> marble location
> marble color

Game Logic

N

Driver < (main.c

OnRamp ()
OnWall()
OnFall()
OnWin()

.

ApplyImpulse()
CheckPosition()

\

W,

_

v,

readTrackball()

(

<

Figure 4: Block Diagram

-

User Input

trackball

USB

[— trackball.c]

Algorithms

Game Logic
Starting the Game

When you start the game there will be a main menu screen that shows the
title of the game, text indicating the controls used to play the game, and
the number of marbles launched (which is another way to say the number of
games played) since the game was booted.

Gameplay

The goal of the game is to successfully traverse the marble from the starting
location to the final destination marked with a hole for the marble to fall
into. The player will move the marble around the course using the trackball.

As the player traverses through the course, they will encounter obstacles such
as ramps, cliffs, and bumps in the path. The player must move carefully, as
falling off the map returns them to the start screen and they will have to
start over.

If the player successfully completes the level by getting the marble to the
hole, they will advance to the next level. If they complete the final level, the
time it took to finish the game will be displayed.

Game Maps

The software will contain a GameMap that allows the logic to be informed
of which tile is in any given x- and y position. The GameMap will be a 2D
array of characters, with each character corresponding to a certain type of
tile. To conserve space, the dimensions of the matrix can be half of that of
the tile map, allowing 4 bytes to be used for each position since there will be
fewer than 16 distinct types of tiles.

Game Implementation

The marble object maintains its own velocity and interacts with the envi-
ronment through a set of member functions. These functions will control

4

how the marble responds to inputs from the trackball, and the physics of the
game map.

applylmpulse(int dx, int dy)

This will add the given change in x and y velocities to the marbles current
x and y velocities. This will be called when the player uses the trackball to
apply a directional force to the marble.

checkPosition()
Reads the marble’s current x and y position to look up the corresponding
terrain (ex. ramp, flat, wall) in the GameMap, to determine what terrain the

marble is on and based on that what function needs to be called (OnRamp(),
OnWall(), OnFall(), or OnWin())

handleRamp(int direction)

Applies a fixed change to the marble’s velocity to simulate gravity pulling
it down the ramp. The direction of the velocity changes depending on the
ramp’s orientation which is inferred from the GameMap

handleWall(int nx, int ny)

This function is called when the marble collides with a wall. The input pa-
rameters are the wall’s normal. Upon collision, the new velocity is computed
by reflecting the current velocity vector across the wall normal.

handleFall()

Called when the marble moves out of bounds. This triggers a pause and then
returns the player to the start screen. It also updates the counter that tracks
how many marbles have been launched since the game booted.

handleWin()

Called when the marble enters a win tile (the hole). This function will trigger
the system to advance to the next level or if it is the final level a win screen
will be displayed.

Peripheral-Interfacing Functions

setupReader()

This function is called at the start of each level to perform any necessary
setup for the trackball-reading thread (discussed below).

read Trackball()

This function returns a struct storing the net dx and dy input by the track-
ball since the last time it was called. These values are then used to calculate
the input values to applyImpulse.

Graphics Generation

Graphics rendering will be the primary function of the FPGA, which will be
configured specifically to draw isometric levels. The actual rendering will not
affect any game logic.

Graphics generation will be done using three main levels: a background
level that will be used for rendering the isometric background, a sprite level
that will be used to draw sprites, and a Ul level that will be used to draw
static Ul elements.

Critically, our graphics generation and rendering have as little connec-
tion to the software logic as possible, besides updating of position or level.
Graphics rendering will all occur on the FPGA using a GameMap, TileMap
and ColorMap.

The GameMap will be a top-down 2.5D representation of our levels: for
any (x,y) coordinate pair, there can only be one tile, but the tiles can have
a height between 0 and 256 (one byte for height). As such, each level will
also have an associated height map that specifies the heights of each tile.
Hardware will then take this GameMap and the associated height map in
order to render an isometric projection of the GameMap.

Tiles will be stored with 4bpp (4 bits per pixel), meaning each tile pixel
can be one of 16 colors of its palette. In order to differentiate levels, there
may be different palettes associated with each level.

In order to translate from top down 2D coordinates (x,y, z) to isometric
coordinates (z’,y'), we will use the following simple formulas:

These operations are all powers of two, so they should be incredibly effi-
cient.

We can also easily convert back to top-down coordinates using the fol-
lowing formulas:

r=1a + 2y
y=—a"+2y

Sprites will be 16x16 pixels large, with a maximum of 256 (subject to
change) sprites on screen at once. This is overkill.

The UI layer will be much simpler, being a static 40x32 grid of 8x8 tex-
tures. This will be used for all Ul aspects.

Since we are using 4bpp, each color palette will have a maximum of
16 possible colors. It’s easiest to store the raw RGB values of each color,
meaning each palette will have 45 bytes (one color will always be reserved
for transparent).

Resource Budget

Like mentioned in the graphics generation section, we will be using a tile
map in order to display our levels to keep our memory usage low. The only
sprite that will be in the game will be the sprite for the banana marble itself,
while the rest of the visuals are tiles.

In our game, we have 3 different tiles. One tile is for floors and walls,
one tile is for ramps facing left and there is one for ramps facing right. We
can use these 3 basic tiles to generate the terrain for our level. We plan to
split each tile into a hexagon of 6 distinct triangles. We can reuse one of
the triangles from the flat floor tile to produce the ramp tiles and the same
triangles for the left ramp can be used to generate the right facing ramp.
Because of this we can conserve some bytes being used to store the tiles.
Here are the resources displayed and layed out in a table.

Total Size

Name Graphic Size (bits) (bytes)

Banana

Ball 16x16 128

Floor Tile
Using 6 16x16 192
Triangles

Ramp Left
Tile Using 16x16 160
5 Triangles

Ramp
Right Tile
Using 16x16 0
Existing
Triangles

Figure 5: Resources - Total Size: 480 bytes

The Hardware

Registers

The NES has the following register layout (though some have been cut out
for the sake of brevity):

Name Type Description

PPUCTRL W Selector Bits

PPUMASK W Rendering Selector Bits
OAMADDR | W OAM Read/Write Address
OAMDATA | R/W OAM data read/write
PPUSCROLL | W | Y Scroll Bits (there will be no x scrolling)
PPUADDR | Wx2 VRAM address

PPUDATA | R/W VRAM data read/write

Figure 6: Register Map

Our register map will look very similar to this, though the size of each
register will be larger, and we may opt instead to write data before writing
address, the thought being that the FPGA would store the most recent data
written to it in a register, and any writes to the address register simply
copying the contents of that data register to the specified destination.

Peripherals

The user will provide input to the game through a Kensington Orbit Optical
Trackball mouse, which provides a 360° trackball, as well as two buttons.
The mouse connects to the FPGA via a USB port, and its input can be read
through the /dev/input/event0 file.

Inputs are sent and read in the form of the input_event struct, which
allows our userspace program to read the mouse’s input. Since we are only
using the mouse for directional input, we only store packets where the .type
field is set to EV_REL, in which case we read the .value field, which will
either be an x or y offset, depending on the value of ev.code (REL_X or
REL_Y, respectively).

Since the trackball will be sending events far more often than frames
will be generated, we will have a thread constantly reading and processing
input events. This thread will store and update net dx and net dy values,
corresponding to the accumulated change in the ball’s position since dx and
dy were last read by the main thread. This thread will also use appropriate
locking to ensure that the main thread can read dx and dy correctly.

10

