CSEEW4840 Embedded Systems Design Document

FPGA-Driven ‘Forest Fire and Ice’ Game: Design and

Implementation
Yifan Mao Weijie Wang Yonghao Lin
ym3064Q@columbia.edu ww2739@columbia.edu y15763Q@columbia.edu
Yang Cao Zhenqi Li
yc4535@columbia.edu z135080@columbia.edu

Contents
1 Introduction e 2
2 System Block Diagram 2
2.1 Data Communication Design 0o 2
2.2 Hardware Responsibilities oo o 3
2.3 Software Responsibilities L 4
3 Algorithms e 4
3.1 Software 4
3.1.1 Character Movement Logic 4
3.1.2 Collision Detection Algorithm 5
3.1.3 Interactive Mechanisms Logic 5
3.2 Hardware 5
3.2.1 VGA Video Generation Algorithm 5
3.2.2 Tile Rendering Algorithm 6
3.2.3 Sprite Rendering and Composition Algorithm 6
3.2.4 Collision Detection Algorithm 7
3.2.5 Audio Playback Algorithm, 7
4 Resource Budgets L 7
4.1 On-Chip Memory (BRAM) Usageo ii i it i 8
4.2 Logic Resources (LEs and Control) 8
4.3 DSP and Multiplier Resourceso o 9
4.4 External Memory and Bandwidth Considerations 9
4.5 SUMIMATY . . ¢ o v v e et e e e e e e 9
5 The Hardware/Software Interface 9
5.1 Memory-Mapped Register Summary00 10
5.2 Communication Protocol 10
5.3 Access Mechanism 10
5.4 Polling-Based Synchronization 0. 11

1 Introduction

This project aims to implement a simplified version of the popular cooperative puzzle-platformer
game Forest Fire and Ice on the Terasic DE1-SoC FPGA platform. The game features two charac-
ters—Fire Boy and Water Girl—who must navigate through a series of levels filled with obstacles,
traps, and interactive elements.

The system leverages both the FPGA fabric and the Hard Processor System (HPS) of the
Cyclone V SoC. The FPGA is responsible for generating 640x480 @ 60Hz VGA video output,
performing real-time tile-and-sprite composition and optional collision detection, and streaming
PCM audio. Meanwhile, the dual-core ARM processor executes high-level game logic, player
control, and system coordination.

Gameplay is controlled via a USB input device (i.e. keyboard), with the video output rendered
to a VGA monitor. The game is designed to run at a steady 60 frames per second to ensure smooth
and responsive interaction.

Figure 1: Game of “Forest Fire and Ice”

2 System Block Diagram
This system clearly partitioned into two domains:

¢ Hardware Domain (FPGA / SystemVerilog) — handles all pixel-rate activities (tile+sprite
mixing, optional collision detector, audio serialization, VGA timing).

e Software Domain (ARM Core / C): Focuses on high-level game logic such as collision
detection, rule enforcement, and player state transitions.

Communication between the software and hardware domains is conducted via the Avalon Bus,
a memory-mapped interface that allows the ARM processor to write/read registers/BRAM in the
FPGA.

2.1 Data Communication Design

To maximize performance and maintain modularity, all rendering is handled by the FPGA hard-
ware. The software domain is responsible only for transmitting high-level game state to the hard-
ware. Each sprite (e.g., Fire Boy, Water Girl, game objects) is described by a fixed-size entry in
the memory-mapped SPRITE_ATTR_TABLE, updated once per frame.

Each sprite entry includes the following fields:

e X, Y Coordinates: The on-screen position of the sprite in pixel space.

write

. \
|
|
1

Software (ARM Core, C)

Thread

_— VBlank Handler

Avalon Device! Thread
Bug _iDevice)
(32bit Ibr-ve_r: rea > . < USB Keyboard (Input)
w‘oltk) H | Gawme Logm
i i

1 \
VGA Display (Monitor) Q—C:“(S’sﬁc—: Top Module E -—
.

Thread

Audio Thread

Hardware (FPGA / Sys‘temVeri[og)

,,, T
CONTROL_REG / STATUS_REG / SPRITE_ATTR_TABLE RAM

e v enable/disable
N “'——",- dudio | L '
Speaker SN comee) (S :‘ _ _o_ B " Collision Unit (Optional)
S T ,,,,,,,,,, { spribevs.tile |

RGB

FG pixel RGB

Figure 2: Block Diagram of “Forest Fire and Ice”

Frame ID: An index into the sprite pattern ROM, used to select the animation frame.

Priority: Determines z-ordering; higher priority sprites (e.g., Water Girl) visually cover
lower priority ones (e.g., Fire Boy).

Width, Height: Defines the bounding box of the sprite for rendering and hardware collision.

Flags: Encoded status such as alive/dead, jumping, or on a switch.

These sprite attributes are written by the software to the MMIO SPRITE_ATTR_TABLE, which is
stored in FPGA on-chip RAM and used directly by the rendering and collision engines.

2.2
[]

Hardware Responsibilities
Generates synchronized VGA signals (HSYNC, VSYNC, RGB) for real-time video output.
Stores tile maps, sprite patterns, and audio samples in on-chip BRAM.

Provides MMIO-based register interfaces (CONTROL_REG, STATUS_REG) accessible from
HPS.

Selects and renders background tiles using a Tile Engine based on CONTROL_REG selection.
Manages sprite rendering and composition over tiles via the Sprite Engine.

Performs optional hardware-accelerated collision detection between sprites and tilemap ele-
ments.

Outputs PCM audio data stored in BRAM via 12S interface to WM8731 codec.

2.3

Software Responsibilities

The software periodically polls input devices and executes all high-level game logic. Its responsi-
bilities include:

Parsing user input (e.g., from USB keyboard) to update player movement and game state.
Handling interactions with environment elements such as doors, lever, and switches.
Detecting sprite-to-sprite collisions in software.

Optionally handling sprite-to-tile collisions in software, or enabling the hardware collision
detector via CONTROL_REG[2].

Polling the STATUS_REG to read VGA scanline (vcount) and safely write updates during the
VBlank window (i.e., when vcount > 480).

Updating the CONTROL_REG to select the current tilemap and trigger audio playback.

By separating game logic from display logic, and synchronizing all MMIO writes during the
vertical blanking interval, the software ensures smooth, tear-free frame rendering at 60Hz.

3 Algorithms

3.1

3.1.1

Software

Character Movement Logic

Each character—Fireboy and Watergirl—has distinct movement capabilities, managed through a
finite state machine (FSM) that interprets player inputs and updates character states accordingly.
Movement States:

1.
2.
3.

Idle: No movement input detected.
Moving Left/Right: Horizontal movement based on input.
Jumping: Initiated when the jump input is received, and the character is grounded.

Falling: Occurs when the character is airborne without upward velocity.

Input;
Detected?

Yes

N

iy

Left/Right
\ Vol

Update Horizontal Position [Set Upware J Velocity —| l Ignore :nmp Input |

| Update Vertical Position | l Maintain Current State |

Figure 3: The flowchart of Character Movement Logic

Gravity is simulated by incrementally increasing downward velocity when the character is airborne.
And Post-movement, collision detection ensures characters do not pass through solid objects.

3.1.2 Collision Detection Algorithm

Collision detection ensures that characters interact appropriately with the game environment,
including platforms, hazards, and interactive objects. We utilize Axis-Aligned Bounding Box
(AABB) collision detection, comparing the rectangular boundaries of characters and objects. Col-
lision Response Examples:

1. Solid Objects: Prevent movement through the object by resetting position to the last valid
state.

2. Hazards (e.g., Water for Fireboy, Lava for Watergirl): Trigger character death sequence.

3. Interactive Objects (e.g., Buttons, Levers): Activate associated mechanisms.

I Retrieve Character Bounding Box |

| Retrieve Object Bounding Box]

!

Do Boxes
Overlap?

Yes

y \

l/ | Determine Collision Response

Execute Response
(e.g., Stop
Movement, Trigger

Event)

Continue Game Loop

No Collision

Figure 4: The flowchart of Collision Detection

3.1.3 Interactive Mechanisms Logic

Interactive mechanisms, such as buttons and levers, alter the game environment when activated by
characters. For example, When pressed the button, may open doors or move platforms or toggle
states of environmental elements, such as activating traps or elevators.

Mechanism Activation Conditions:

e Proximity: Character’s bounding box overlaps with the mechanism’s bounding box.

e Action Input: Specific input received to activate the mechanism (if required)

3.2 Hardware

The hardware components implement the following algorithms to efficiently handle graphics ren-
dering, sprite management, collision detection, and audio playback:

3.2.1 VGA Video Generation Algorithm

e The VGA controller maintains horizontal (hcount) and vertical (vcount) counters synchro-
nized to generate a standard 640x480 @60Hz VGA output.

e On each clock cycle, these counters provide coordinates (z,y) to the Tile and Sprite Engines
to determine the pixel colors for display.

Start.

Check Character Proximity to Mechanism

Change Environment; State | [_Continue Monitoring | [Continue Game Loop

Figure 5: The flowchart of Interactive Mechanism

3.2.2 Tile Rendering Algorithm

e The active tile map (selected by the software via CONTROL_REG) is stored in FPGA on-chip
ROM (three preloaded tile maps, each 40x30 tiles).

e Given the current (z,y) scan coordinates, the Tile Engine calculates which tile should appear
at this pixel location:
tile_r = x/16 (x >>4)
tile_y = y/16 (y >>4)
tilesid = TILE_M AP_ROM [active_mapl][tile_y|[tile_x]

e The pixel within the tile is determined by:

pizel_r = z%16 (x&0x F)
pirel_y = y%16 (y&0z F)
color_id = TILE_PATTERN _ROM tile_id][pizel y][pizel _x]

e color_id is used to lookup RGB values from the unified Color Palette ROM (RGBS8S8S8).

3.2.3 Sprite Rendering and Composition Algorithm

e Up to 16 sprites are stored in an FPGA BRAM buffer (SPRITE_ATTR_TABLE), updated each
frame by software via MMIO.

e Each sprite entry contains {z,y, frame_id, priority, width, height, flags} (8 Bytes).
e For each pixel (z,y):

— The Sprite Engine iterates through all sprites to determine coverage at (z,y):

* Checks if (z,y) lies within a sprite’s bounding box:

sprite_x < x < sprite_x + width
sprite_y < y < sprite_y + height

« If multiple sprites overlap at this pixel, select the sprite pixel color ID from the
highest priority sprite (larger priority value indicates higher priority).

* In the default scenario, the Water Girl sprite has higher priority than Fire Boy,
meaning Water Girl can visually cover Fire Boy when overlapped, and no collision
between them is detected due to priority handling.

* Fetch the sprite pixel color ID:
pizel_r = x© — sprite_x

pizel_y =y — sprite_y
color_id = SPRITE_PATTERN _ROM |frame_id|[pizel_y|[pizel]

* If color_id is non-zero (non-transparent), this pixel overrides any lower priority
sprite or tile pixel at this location.

e The final composited pixel RGB value is sent directly to the VGA output.

3.2.4 Collision Detection Algorithm

e Hardware-based collision detection is an optional feature that can be enabled or disabled by
software via the collision enable bit in CONTROL_REG. Software can choose to handle collision
detection entirely in software if desired.

e When enabled, the hardware Collision Detector checks for collisions between player sprites
and tilemap elements only. Collision detection between sprites must be implemented fully
in software. Additionally, software can optionally implement sprite-to-tile collision detection
without using the hardware unit.

e For player sprite bounding boxes, the hardware Collision Detector performs the following
steps:

— Computes player bounding boxes based on sprite attributes (x, y, width, height).

— Samples relevant tile IDs from the active tile map ROM at positions overlapped by the
sprite bounding boxes.

— Determines collision type by comparing sampled tile IDs against predefined tile types
(FIRE, WATER, WALL, POTSON, GOAL).

e Specifically:

— Water Girl sprite will be detected as collided (and thus will ”die”) if overlapping a FIRE
tile.

— Fire Boy sprite will similarly ”die” if overlapping a WATER tile.
— Both Water Girl and Fire Boy sprites will ”die” if overlapping a POISON tile.

e Collision detection results (collision type) are written to STATUS_REG bits [23:20] for soft-
ware to read and respond accordingly.

3.2.5 Audio Playback Algorithm
e Audio clips are preloaded into BRAM as 8kHz, 16-bit PCM mono samples.

e Software selects audio clip playback by writing the audio select bits in CONTROL_REG.

e FPGA continuously streams selected audio clip data through an internal FIFO to the WM8731
audio codec via 12S.

e Audio FIFO ensures smooth, uninterrupted playback without CPU intervention.

These algorithms are fully pipelined and synchronized using a unified system clock, ensuring
smooth and continuous rendering, accurate collision detection, and seamless audio playback.
4 Resource Budgets

The DE1-SoC platform provides limited on-chip FPGA resources, particularly in terms of BRAM
(Block RAM), logic elements (LEs), and DSP blocks. This section summarizes the estimated
consumption of these limited resources, based on the current system architecture.

4.1 On-Chip Memory (BRAM) Usage

Component

Memory Type

Size Estimate

Description

Tile Maps (x3) BRAM (ROM) | 3.6 KB 3 static tilemaps, each 40x30 tiles (1
byte per tile)

Tile Pattern Table BRAM (ROM) 64 KB 256 tile types, each 16x16 pixels, 8-bit
color 1D

Sprite Pattern Table BRAM (ROM) 32 KB Multiple sprite animation frames, 8-bit
color ID per pixel

Sprite Attribute Table BRAM (RAM) 128 B 16 sprite entries, each 8 bytes

Color Palette BRAM (ROM) | 768 B 256 entries, each 24-bit RGB888

Audio Clip ROM BRAM (ROM) 160 KB <10 seconds of mono 8kHz 16-bit PCM
audio

Audio FIFO BRAM (FIFO) | 1 KB 256 entries x 32-bit word depth for
smooth streaming

Collision Status Buffer Register negligible Result flags stored in STATUS_REG

MMIO Control Registers | Register negligible CONTROL_REG, STATUS_REG, etc.

Total ~261 KB Well within ~495 KB BRAM budget of

the Cyclone V FPGA

Table 1: Estimated On-Chip BRAM Usage

Table 2 below summarizes the estimated ROM usage for all sprites in the game, including char-
acters, items, and interactive objects. Each frame pixel is stored using 8-bit color-ID to retrieve

RGBS888 from Color Palette.

Sprite Frame Size | Bytes/Frame | Frames | Total Memory (Bytes) | Description

Fireboy 2x16x16 2x256 2x10 10240 stand, walk, run (left/right)

Watergirl 2x16x16 2x256 2x10 10240 stand, walk, run (left/right)

Red Gem 16x16 256 1 256 Collection, disappears after collision
Blue Gem 16x16 256 1 256 Collection, disappears after collision
Purple Button 16x16 256 2 512 Pressed/unpressed animation states
Yellow Elevator 32x16 512 2 1024 Moving platform (up/down) animation
Purple Elevator 32x16 512 2 1024 Moving platform (up/down) animation
Yellow Lever 16x16 256 2 512 Toggleable lever: left/right state

Fire Pool 32x16 512 2 1024 Hazardous to Watergirl only

Water Pool 32x16 512 2 1024 Hazardous to Fireboy only

Green Pool 32x16 512 2 1024 Hazardous to all characters

Box 32x32 1024 1 1024 Movable block used in puzzles

Table 2: Detailed Sprite Pattern Table with Memory Breakdown

The total ROM usage for all sprite patterns is approximately 28 KB, which is well within the
32 KB allocated in BRAM for the Sprite Pattern Table. This leaves ample room for adding new
animation frames or additional sprite types in future iterations.

4.2 Logic Resources (LEs and Control)

e Tile Engine: ~4,000 LEs — tilemap lookup, tile pattern access, palette decoding.

Sprite Engine: ~5,000 LEs — per-pixel sprite overlay logic, priority comparison.

e VGA Controller: ~2,000 LEs — synchronization counters and pixel timing generator.

e Collision Unit: ~2,000 LEs — tile sampling, bounding box comparator.

Audio Output: ~2,000 LEs — I2S interface, FIFO control, 12C codec setup.
Register Interface/MMIO: ~1,000 LEs — Avalon-MM slave logic, register decoding.

Estimated total: ~16,000 LEs — comfortably within the ~50K logic elements available on

the DE1-SoC FPGA.

4.3 DSP and Multiplier Resources

e The design avoids use of hardware multipliers or DSP blocks.

e All tile and sprite positioning is handled via simple integer arithmetic (division by powers of
two and modulo).

e Audio playback is stream-based, with no filtering or mixing done in hardware.

4.4 External Memory and Bandwidth Considerations

e All visual and audio assets are fully preloaded into BRAM at boot time — there is no
runtime streaming from HPS DDR3.

e Tilemaps and tile/sprite patterns are static during runtime; only sprite attribute table up-
dates (128B per frame) are written via MMIO.

e Audio FIFO consumes low bandwidth and is software-controlled; clip selection does not
require data fetching from SD or DDR3 after boot.

4.5 Summary

The design fits comfortably within the on-chip BRAM and logic resource limits of the Cyclone V
FPGA on the DE1-SoC. By avoiding streaming or dynamic asset loading and using pipelined en-
gines for rendering, the system guarantees low-latency output while staying resource-efficient. The
hardware collision unit and audio output system are optional accelerators, offloading lightweight
tasks while leaving core logic in software control.

5 The Hardware/Software Interface

This section details the MMIO-based interface between the HPS software and the custom FPGA
hardware. All communication between the two sides occurs through memory-mapped registers and
shared RAM regions, exposed via an Avalon-MM slave interface mapped into the HPS address
space. The interface allows software to control rendering, sprite positioning, collision logic, and
audio playback.

5.1 Memory-Mapped Register Summary

Register Name

Address Offset

Width

R/W

Description

CONTROL_REG

0x000

32-bit

Write-only

[1:0]: Tilemap select (0-2)

[2]: Enable hardware collision de-
tection (1 = enable)

[4:3]: Audio clip select (0-3)
Unused bits should be written as
Z€ro.

STATUS_REG

0x004

32-bit

Read-only

[9:0]: Current horizontal VGA pixel
count

[19:10]: Current vertical VGA pixel
count

[23:20]: Collision result type

- 0: No collision or detection dis-
abled

- 1: Any sprite touched WALL tile
- 1: Water Girl touched FIRE tile

- 2: Fire Boy touched WATER tile
- 3: Any sprite touched POISON tile
- 4: Player reached GOAL tile

SPRITE_ATTR_TABLE

0x700-0x77F

128 bytes

R/W

16 entries X 8 bytes per sprite.
Each sprite entry contains:

[15:0]: x position (in pixels)
[31:16]: y position (in pixels)
[39:32]: frame_id (animation
frame index)

[43:40]: priority (used for pixel
overlay condition)

[47:44]: reserved flags (bitfield,
reserved for future features)
[55:48]: width (bounding box
width in pixels)

[63:56]: height (bounding box
height in pixels)

5.2 Communication Protocol

Table 3: Hardware-Controlled MMIO Registers

e The HPS software updates the SPRITE_ATTR_TABLE at each VBlank period, typically once

per frame.

e The software selects which tilemap and audio clip to use by writing to CONTROL_REG.

e Hardware updates the STATUS_REG every clock cycle with real-time scan position and collision

results.

e Collision detection is performed in hardware only when enabled, and only for sprite-to-tilemap
interactions. Sprite-to-sprite collisions are fully handled in software.

e Audio playback is initiated in hardware when a new clip index is written to CONTROL_REG [4:3].
The corresponding clip is streamed from BRAM to the I2S interface.

5.3 Access Mechanism

All registers and MMIO buffers are exposed via an Avalon-MM slave peripheral. A corre-
sponding Linux device driver will be implemented to provide structured access from user-
space programs via standard interfaces such as ioctl() or mmap(), with the driver using
of _iomap() internally to map device registers. Alternatively, /dev/mem may be used for
low-level access during development.

10

5.4

Software should align all 32-bit writes and reads to word boundaries and avoid partial byte
writes.

Updates to the sprite attribute table must be written atomically to avoid visual glitches.

Polling-Based Synchronization

This system does not currently use interrupts for synchronization. Instead, the HPS software
polls the STATUS_REG each frame to track VGA timing.

Specifically, the software reads the vcount value from STATUS_REG[19:10].

While 0 < vcount < 480, rendering is in progress; software prepares updated data (sprites,
control register).

When vcount > 480 (during VBlank), software performs writes to hardware (e.g., sprite
attribute table, CONTROL_REG). This avoids visual tearing by ensuring all updates take
effect at the start of the next frame.

This polling-based synchronization is simple and effective for the game’s frame-locked ren-
dering loop.

11

	Introduction
	System Block Diagram
	Data Communication Design
	Hardware Responsibilities
	Software Responsibilities

	Algorithms
	Software
	Character Movement Logic
	Collision Detection Algorithm
	Interactive Mechanisms Logic

	Hardware
	VGA Video Generation Algorithm
	Tile Rendering Algorithm
	Sprite Rendering and Composition Algorithm
	Collision Detection Algorithm
	Audio Playback Algorithm

	Resource Budgets
	On-Chip Memory (BRAM) Usage
	Logic Resources (LEs and Control)
	DSP and Multiplier Resources
	External Memory and Bandwidth Considerations
	Summary

	The Hardware/Software Interface
	Memory-Mapped Register Summary
	Communication Protocol
	Access Mechanism
	Polling-Based Synchronization

