
CircuitSim Design Document

Andrew Yang (asy2130)
Case Schemmer (chs2164)
Faustina Cheng (fc2694)
Jary Tolentino (jt3577)
Ming Gong (mg4264)

April 2025

1 Introduction

We are developing an analog circuit simulator on the FPGA, inspired by professional tools like SPICE and
Falstad. The simulator parses SPICE netlists into node and component representations. In each simulation
step, the software linearizes the components and stamps their component models and stamps their contri-
butions into matrix equations. These equations are then offloaded to a hardware module, which solves them
using Gaussian elimination. The resulting node voltages are returned to the software for further processing
or visualization.

2 System Block Diagram

Details of the Circuit Simulator are included in Section 3.3 and details/block diagrams of the Gaussian
Elimination accelerator are included in Section 4.

1



3 Algorithms

The user will provide input in the form of a SPICE-like netlist, specifying each component’s type, node
connections, and parameters (e.g., resistance, capacitance, etc.). The software parses the components into
matrix equations using linear approximations and node voltage analysis. The FPGA performs Gaussian
elimination to solve the resulting linear system, which operates in O(n3) time complexity. The simulation
outputs the computed node voltages as a CSV file.

The software maintains two data structures:

• A component array that registers every circuit component, their connections, values, and memories

• The node matrix entries G,v, I.

3.1 Node Voltage Analysis

Node Voltage Analysis (NVA) is a method used to determine the voltage at various nodes in an electrical
circuit. In the case of a purely resistor network, we can apply Kirchhoff’s Current Law (KCL) at each node
and use Ohm’s Law to express the currents. Let us consider a simple resistor network with current sources.

R1

R2

R3I1

v1 v2

GND

In this circuit, we can use Node Voltage Analysis to find the voltages v1 and v2 at nodes 1 and 2, respectively.
The steps are as follows:

1. Apply Kirchhoff’s Current Law (KCL) to each node, which states that the sum of currents leaving a
node is zero.

• At node v1, the sum of the currents leaving v1 (through the resistors and the current source I1)
should be zero:

v1
R1

+
v1 − v2
R2

− I1 = 0

• At node v2, again, the sum should be zero

v2
R2

+
v2 − v1
R3

= 0

2. Construct a system. Define Gn = 1
Rn

. Move all the G (resistance) term to the LHS, and all I (current)
terms to the RHS, We now have a system of linear equations:{

G1v1 +G2(v1 − v2) = I1
G3v2 +G2(v2 − v1) = 0

Turning into a matrix, we have:[
G1 +G2 −G2

−G2 G2 +G3

] [
v1
v2

]
=

[
I1
0

]
Gv = I

in matrix notation. We can then solve for v1 and v2.

2



Since the components are linear, we can iterate through the array of components and add their contri-
butions to G and I one-by-one. This process is known as stamping.

Through nodal analysis, we can use Kirchhoff’s Current Law to calculate the voltage at each node, when
given n nodes with unknown voltage values. This works when a circuit has current sources, but voltage
sources are different because we cannot determine the current flowing through it purely by looking at its
voltage value.

As a result, we use modified nodal analysis, which solves this by adding the unknown current values to
the v vector. As a result, the size of the vvector is now n plus the number of unknown current values, which
also means that the G and I vectors must increase in size accordingly so that the equations can be solved.
This is solvable, since we also know that difference in voltage between the two nodes coinciding with the
voltage source is equal to the voltage source’s voltage. The matrix now has enough equations to solve for
the unknowns, and is ready to be solved using any method that can solve simultaneous equations.

3.2 Software: Input Parsing

3.2.1 SPICE Parser

Our design supports a subset of circuits described using a SPICE netlist, specifically those that only have
the components supported for this project. These components are:

• Current sources

• Voltage sources

• Resistors

• Capacitors

• Inductors

• Diodes

3.2.2 Circuit Interpretation

In order to convert the netlist into a mathematically solvable form, we reconfigure the netlist as components
and nodes, which are then ”stamped” one by one onto the G, V and I matrices.

For simple components such as resistors and current sources, this is simple using nodal analysis. Voltage
sources are slightly more complicated, and require modified nodal analysis to derive the current flowing
through the current source. For time-varying and non-linear components, simply applying Kirchhoff’s Cur-
rent Law is not sufficient, since Gaussian elimination cannot directly solve nonlinear terms. As a result,
the software must translate these components into linear companion models, which closely approximate the
original components, which is expanded upon in later sections.

3.2.3 Matrix Solver

To solve the system of equations, our design uses Gaussian elimination as the algorithm of choice. This will
be done on the FPGA, which will take the matrices and return the solved unknowns.

3.2.4 Data Visualization

The simulation will output the node voltages at each timestep (the time duration is specified within the
SPICE netlist) to a CSV file, which can be easily visualized using any plotting tool.

If we have time, we would also like to construct a simple animation of the circuit as a graph, so that we
can approximately visualize the circuit described in the netlist with the state of the circuit at each timestamp.

3.3 Modeling Time-varying and Non-linear Components

Now we have a general workflow for static, linear components. For more complicated components, we will
need to employ linear companion models.

3



3.3.1 Capacitors: Backwards Euler’s Method

Let’s replace R2 with a capacitor with capacitance C.

R1

R2

CI1

v1 v2

GND

Using backward Euler’s method,

i(t) = C
dvC
dt

= C
d(v2 − 0)

dt

i(t0 +∆t) ≈ C
v2(t0 +∆t)− v2(t0)

∆t

v2(t0 +∆t) = v2(t0) +
∆t

C
i(t0 +∆t)

Let Veq = v2(t0) and Req = ∆t
C , the equation becomes

v2(t0 +∆t) = Veq +Reqi(t0 +∆t)

This capacitor is converted into a voltage source and a resistor in series, at this particular timestamp.
Voltage sources introduce additional nodes, so we convert it to a current source in parallel (Norton

equivalent). Let Ieq =
Veq

Req

Our simulation becomes

1. At t0, stamp all static components, and Req, Ieq calculated from the initial condition, or from the
previous iteration

2. Solve the matrix

3. Update time step, and update the values of Req, Ieq in the component array based on v(t0 +∆t)

R1

R2

Req IeqI1

v1 v2

GND

3.3.2 Diodes: Newton-Raphson Method

Diodes are nonlinear, with the following current-voltage relation:

id = Is(e
vd/Vt − 1)

where Is, Vt are constants.
The Newton-Raphson method makes a linear model at the current estimate, and updates our model until

it converges.
Take the derivative at step 0, where id = id0, vd = vd0:

Geq ≡ did
dvd

=
Is
Vt

evd0/Vt

4



id ≈ id0 +Geq(vd − vd0)

= (id0 −Geqvd0) +Geqvd

Looks familiar! A current source in parallel with a resistor (conductor). Let Ieq = (id0 −Geqvd0). We have:

id = Ieq +Geqvd

At a particular time (operating point), we perform the following loop:

1. stamp() all components. For nonlinear components,

(a) Make an initial guess on vd0.

(b) Using vd0, calculate Id0, Geq, Ieq

(c) Add Geq and Ieq onto G and I

2. Solve the matrix Gv = I

3. update() the new vt0 from the new v

4. Check for convergence: find the maximum change of v from the previous iteration. Finish if it’s less
than a threshold.

This solves an operating point.

3.3.3 Simulation Summary

Below is the flow chart for the entire simulation loop

• stamp() loads the components from the list to G, I

• Hardware solves the matrix

• update() updates the components’ memory from the results of v

With a similar idea, we can simulate ideal voltage sources, finite-gain opamps, and MOSFETS. Below
are some ”interesting circuits” that we hope to impress Stephen Edwards

• Diode voltage rectifier

5



• 4th order Sallen-Key filter

• MOSFET amplifiers

• Digital gates

• Flip-Flop

4 Gaussian Elimination Hardware Accelerator

4.1 Outer block design

This is our block diagram for Gaussian elimination. Here, we find a pivot for the Gaussian process. In the
pivot finder block, there is internal logic. From here, we check if we need to swap by seeing if piv=k. If so,
perform a pivot swap using the tmp register. After this, the control is passed to the inner loop (more details
below). Finally, we do back substitution for the last step to determine the actual values in the GI-V matrix.

All blocks will read/write from/to the memory to its internal registers, whose addresses and destinations
are controlled by a control logic.

6



4.2 Inner block design

For the inner loop, the elimination process works as follows:
To access memory of a specific entry, we have address decoders to take rows and columns and provide the

exact memory address for the value, and then access this memory in ”read mode”. We used the available
Altera Floating Point cores, e.g. ALTFP MULT, ALTFP ADD SUB, and ALTFP DIV to perform the
arithmetic for computing values i and j within the inner block of the Gaussian Elimination. The counters
allow us to determine the next state logic for the state flip flop.

After start, the control state machine reads the memory and loads the floating point numbers into
the corresponding data registers (en signal). After a successful computation, the result is written back to
memory.

The control state machine will generate control signals for the FP units, and handle their outputs and
exceptions (e.g. division by zero)

4.3 Floating Point IP

We intend to use the Floating Point IP provided by Altera. The general overview of all blocks is that they
take in two inputs, a clock, and an enable switch. The result appears some number of clock cycles later.
This is preset by the user and will allow for slower or quicker clock frequencies. To ensure the result is read
at the exact right clock cycle, we use a counter with a threshold signal to read the result. There is an async
clear set that works with our IP’s reset signal. Finally, there are additional signals for overflow/underflow,
zero, NaN, or division by zero (DIV), which will be handled by the state machine.

5 Resource Budget

Our resource budget is constrained by the memory, which in this case is less than half a megabyte. For this
project, the memory usage is dominated by the matrices, the sizes of which are determined by the size of
the circuit. For this project, we plan to use 32-bit floats, and will have a G matrix of dimension n by n,
a v vector of size n, and an I vector of size n. As a result, we should be able to safely solve matrices up
to size 256 by 256, which would require approximately 262 kilobytes, safely under the limit. However, this
means that we can only support circuits with fewer than 256 unknowns. The nodes will be managed in the

7



software, and if the software parses the netlist and finds that there are too many unknowns, it will raise an
error to the user before the data is passed to the FPGA.

For this project, the representation of the matrix will be under the assumption that it is dense, even
if it isn’t, because the implementation of Gaussian elimination is significantly easier when all the data is
contiguous.

6 Hardware/Software Interface

The main interactions between the hardware and software revolve around the transfer of the G matrix and
V/I vectors to the FPGA and sending the result of the Gaussian elimination algorithm from the hardware
to software. In order to facilitate this, the software will need to allocate space for the matrix and the two
vectors, write to it, and then send the memory addresses to the FPGA so that it can read the data. In order
to do this, the hardware must also send a signal telling the FPGA that it is ready to start, as well as the
dimension of the matrix, since that decides how the data is read.

The register map will have:

• Byte offset 0: Start flag to notify the FPGA that it can start execution and read from memory, only
one bit is used

• Byte offset 4: Done and Error flag that marks when the FPGA is done with the algorithm, or runs
into an error, only two bits are used

• Byte offset 8: Matrix dimension, since the max is 256, only 8 bits are used

• Byte offset 12: Lower 32 bits of the memory address that the G matrix starts at

• Byte offset 16: Upper 32 bits of the memory address that the G matrix starts at

• Byte offset 20: Lower 32 bits of the memory address that the V matrix starts at

• Byte offset 24: Upper 32 bits of the memory address that the V matrix starts at

• Byte offset 28: Lower 32 bits of the memory address that the I matrix starts at

• Byte offset 32: Upper 32 bits of the memory address that the I matrix starts at

Once the Gaussian elimination is complete, the FPGA will raise a done flag, signaling to the software
that it is okay to read from the v vector.

7 Milestones

1. 4/5 Working prototype for node voltage analysis

2. 4/12 Complete simulation algorithm with time-varying and non-linear components

3. 4/18 Hardware designed

4. 4/30 Hardware complete

8 References

• SPICE algorithm overview: https://www.ecircuitcenter.com/SpiceTopics/Overview/Overview.
htm

• Nodal analysis: https://www.ecircuitcenter.com/SpiceTopics/Nodal%20Analysis/Nodal%

20Analysis.htm

8

https://www.ecircuitcenter.com/SpiceTopics/Overview/Overview.htm
https://www.ecircuitcenter.com/SpiceTopics/Overview/Overview.htm
https://www.ecircuitcenter.com/SpiceTopics/Nodal%20Analysis/Nodal%20Analysis.htm
https://www.ecircuitcenter.com/SpiceTopics/Nodal%20Analysis/Nodal%20Analysis.htm


• Modified nodal analysis: https://lpsa.swarthmore.edu/Systems/Electrical/mna/MNA2.html#

Example_3

• Dependent sources: https://qucs.sourceforge.net/tech/node60.html

• Netwon-Raphson: https://www.ecircuitcenter.com/SpiceTopics/Non-Linear%20Analysis/

Non-Linear%20Analysis.htm

• Backwards Euler: https://electronics.stackexchange.com/questions/272012/

companion-capacitor-model-in-circuit-simulation

9

https://lpsa.swarthmore.edu/Systems/Electrical/mna/MNA2.html#Example_3
https://lpsa.swarthmore.edu/Systems/Electrical/mna/MNA2.html#Example_3
https://qucs.sourceforge.net/tech/node60.html
https://www.ecircuitcenter.com/SpiceTopics/Non-Linear%20Analysis/Non-Linear%20Analysis.htm
https://www.ecircuitcenter.com/SpiceTopics/Non-Linear%20Analysis/Non-Linear%20Analysis.htm
https://electronics.stackexchange.com/questions/272012/companion-capacitor-model-in-circuit-simulation
https://electronics.stackexchange.com/questions/272012/companion-capacitor-model-in-circuit-simulation

	Introduction
	System Block Diagram
	Algorithms
	Node Voltage Analysis
	Software: Input Parsing
	SPICE Parser
	Circuit Interpretation
	Matrix Solver
	Data Visualization

	Modeling Time-varying and Non-linear Components
	Capacitors: Backwards Euler's Method
	Diodes: Newton-Raphson Method
	Simulation Summary


	Gaussian Elimination Hardware Accelerator
	Outer block design
	Inner block design
	Floating Point IP

	Resource Budget
	Hardware/Software Interface
	Milestones
	References

