
CSEE W4840 Embedded Systems
AccelReg: An Accelerator for Linear Regression

Design Document

Doreen Sisanalli – ds4371
Pranav Asuri – pa2708
Varsha Keshava Prasad – vk2550
Venkat Suprabath Bitra – vsb2127

April 19, 2025

Introduction

Linear regression is a simple and widely used method for modeling the relationship between
two variables: one input (x) and one output (y). In this project, we focus on the 1D case,
where we fit a straight line to data points so that it best predicts y from x. The best line is
found by minimizing the squared differences between the actual y values and the predicted
values, a method known as least squares. We use the closed-form solution, which means
we directly calculate the optimal line using matrix operations, instead of using iterative
methods like gradient descent. This approach is efficient and gives an exact answer for the
model parameters.

In this implementation, the dataset containing the paired input and output values is first
stored on the SD card, which also holds the operating system for the FPGA. The software
module reads this data from the SD card and sends it to the FPGA which processes it to
compute the intermediate values needed for calculating the optimal slope and intercept for
the linear regression model through matrix operations. Once trained, the model can then be
used by the FPGA to make predictions on new input data, enabling efficient and automated
linear regression directly in hardware.

Block Diagrams

The system is organized into software and hardware components for efficient linear regression
computation on FPGA. Data is read from the SD card and processed by software, which

1

Figure 1: Proposed Block Diagram for the Implementation

communicates with the FPGA via the Avalon Bus and a device driver. The FPGA top-level
module receives input data (pairs of xi and yi) and streams them into dedicated accumulator
units.

Within the FPGA, five parallel hardware blocks accumulate the required sums: count
(S1), sum of xi (S2), sum of yi (S3), sum of x2

i (S4), and sum of xiyi (S5). Once accumu-
lation is complete, combinational logic and multipliers compute the necessary products and
differences to form the numerators and denominator for the closed-form linear regression
solution.

The accumulated values and intermediate results are stored and made available to soft-
ware, which then performs the final floating-point division to obtain the regression weights.
This architecture maximizes parallelism during accumulation and offloads only the floating-
point operation to software, efficiently leveraging both hardware and software resources.

Algorithm

For 1D linear regression with n observations (xi, yi), we solve:

y = w0 + w1x⇒ y =
[
w0 w1

]
·
[
1
x

]
using the normal equation:

w = (XTX)−1XTy

where:

X =


1 x1

1 x2
...

...
1 xn

 , y =


y1
y2
...
yn

 , w =

[
w0

w1

]

2

Key matrix computations implemented are:

XTX =

[
n

∑
xi∑

xi

∑
x2
i

]

XTy =

[∑
yi∑
xiyi

]
The inverse of XTX is calculated as:

(XTX)−1 =
1

n
∑

x2
i − (

∑
xi)2

[∑
x2
i −

∑
xi

−
∑

xi n

]
For integer-valued datasets (xi, yi) ∈ Z2, the computation reduces to five critical integer
accumulations:

S1 = n (count)

S2 =
n∑

i=1

xi (linear sum)

S3 =
n∑

i=1

yi (output sum)

S4 =
n∑

i=1

x2
i (parallel squared terms)

S5 =
n∑

i=1

xiyi (cross terms)

These sums can be computed using dedicated parallel blocks by pipelined reduction circuits,
processing data as it streams from the SD card. The only floating-point operation—the scal-
ing factor f = 1/(S1S3−S2

2), is deferred until all integer accumulations complete. However,
the 32-bit word limitation creates a transmission bottleneck

Data transfer time = 2n cycles (for xi and yi)≫ Summation time (⌈log2 n⌉ cycles)

To overcome this, we implement a pipeline accumulation scheme with four parallel compute
units update sums in real-time:

S2 ← S2 + xi

S3 ← S3 + yi

S4 ← S4 + x2
i

S5 ← S5 + xiyi

and S1 increments via a counter with each data pair. After accumulation completes:[
w0

w1

]
=

1

S1S4 − S2
2︸ ︷︷ ︸

integer

[
S3S4 − S2S5

S1S5 − S2S3

]

3

The individual sum accumulators in registers are then processed by a combinational block
to be stored in another register store where we will access the 3 integer values needed to
compute the floating point weights for the given data.

Resource Budgets

The FPGA register allocation with the address locations is as follows:

Input Registers

• Address select width: 1 bit.

• Each register is 32 bits wide.

• Registers:

0: inp x – Input value x supplied by software.

1: inp y – Input value y supplied by software.

Output Registers

• Address select width: 2 bits.

• Each register is 32 bits wide.

• Registers:

00: S1S4 − S2S2 intermediate result.

01: S3S4 − S2S5 intermediate result.

10: S1S5 − S2S3 intermediate result.

Hardware/Software Interfaces

Userspace Program

The userspace program will be responsible for three key functions:

1. Reading data pairs (xi, yi) from the SD card file system and transmitting them to
hardware

2. Controlling the start and reset of the computation process

3. Retrieving the accumulated sums from the FPGA and performing final floating point
computation to get weights

4

The program will read integer data points sequentially from the SD card and stream
them to the hardware through the device driver. After all data is processed, it performs the
final floating-point division using the accumulated values returned from hardware.

Device Drivers

We implement a single device driver that exposes two interfaces to userspace:

1. STREAM interface: Handles the transmission of data pairs to the FPGA using
32-bit words. This interface manages writing (xi, yi) values to the Input Register with
proper addressing.

2. CTRL interface: Controls the operation of the hardware module through:

• START signal to initiate computation

• READ signals to fetch accumulated values

• Addressing signals to select between input mode (Address 0) and result retrieval
mode (Address 1)

Hardware Modules

Our top-level module receives the input data stream and distributes it to five parallel pro-
cessing units:

1. Counter Module (S1): Increments with each data pair to track n

2. Accumulator Units: Four dedicated blocks that compute:

• S2: Sum of xi values

• S3: Sum of yi values

• S4: Sum of x2
i (computed via multiplier + accumulator)

• S5: Sum of xiyi (computed via multiplier + accumulator)

After accumulation completes, the hardware computes intermediate products using multi-
plier blocks:

• S1S4 (count × sum of squares)

• S2
2 (sum of × squared)

• S1S5 (count × cross terms)

• S2S3 (sum of x × sum of y)

• S4S3 (sum of squares × sum of y)

5

• S2S5 (sum of x × cross terms)

The combinational logic blocks then compute:

• S1S4 − S2
2 (denominator)

• S4S3 − S2S5 (numerator for w0)

• S1S5 − S2S3 (numerator for w1)

These values are stored in registers that can be read back by software for final floating-point
division.

Communication Flow

1. Software reads integer pairs from SD card

2. Data travels through Avalon bus to hardware

3. Hardware processes data through parallel accumulators

4. Integer-only multiplication and subtraction operations produce numerators and de-
nominator

5. Software retrieves results and performs final floating-point division

6. Final regression coefficients (w0, w1) are available for prediction tasks

6

