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Introduction
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● Designed a simple custom Convolutional Neural Network
○ Application: Handwritten digit classification
○ Trained on the MNIST dataset with HW constraints in mind
○ Implemented a Fixed Point Simulator to verify hardware modules

● Implemented a real-time system om DE1-SoC FPGA Board with HW/SW Co-Design
○ Integrated the OV7670 camera module to capture handwritten digits
○ Implemented a parameterized accelerator of the entire CNN model
○ C code is used to control the execution of different layers



Convolutional Neural Network: Architecture
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● Designed a lightweight network inspired by simple architectures as LeNet
○ Easy to achieve high accuracy in such an application

● Architecture:
○ 2 convolutional layers with 3x3 kernels of stride 1 and ReLU activation

■ 9 MAC (weights) and 1 extra addition (bias)
○ 2 max pooling layers with 2x2 kernels and stride 2

■ 4-number comparison to extract the maximum value
○ 1 output dense layer that gives the final classification 

■ 324 MAC (weights) and 1 extra addition (bias)



Convolutional Neural Network: Details
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● Input image size: 42x42 pixels
○ Number of weights: 3,438

● Floating point model trained on the MNIST dataset
○ Test accuracy: ~90%
○ Train dataset was modified to match application’s data and HW constraints

● Fixed point simulator was implemented to verify the HW accelerator
○ Test accuracy: ~90%



Convolutional Neural Network: Fixed Point Implementation
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● 8 (4,4) bits per data (2’s complement)
○ Memory budget: 3.4KB (weights) + 1.7KB (data)

● Dataset manipulation:
○ Input images divided by 2 to match 8 bits to 8 signed fixed-point value
○ Trained weights scaled from (-1, 1) to (-8, 8)
○ Final result of MAC divided by 8 before stored



System Architecture
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● Image is captured with a key press and stored on-chip
● SW is notified and invokes the Computation Block for each layer

○ Different configuration for each layer through Avalon Bus
● Computation Block uses Ping-Pong memories to store intermediate results



Camera Sensor
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● Using OV7670 to derive the grayscale image
○ Operating at 12MHz
○ Configuring 79 registers to receive images in YUB422 format in size 80x60
○ Sending frames at 30fps



Camera Sensor Workflow
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CNN Accelerator: Overview

9 | Acceleration of Digit Classification Using Custom CNN on an SoC FPGA

● Accelerator performs one layer computation per execution
○ Layer index indicates the layer to be executed
○ Control Unit is implemented as an FSM that drives other modules accordingly

● 2 Ping-Pong memories are used for data transfer and 1 ROM memory for weights
○ Input image data are read by a different memory



CNN Accelerator: Computation Kernel
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● Performs both MAC and comparison operations in parallel
○ Final result is selected based on the currently running layer

■ CU is responsible for sampling at the correct cycle
○ MAC module is mapped to a DSP block



CNN Accelerator: Verification
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1. RTL testbench (Modelsim) to compare against SW results per layer
2. Verilator testbench to match the way SW handles the accelerator

a. Automated process of verifying new versions fast

● Biggest Challenge:
○ Correct Implementation of arithmetic operations in 2’s complement
○ Bad overflow detection 

■ Used for ReLU and max-pooling layers



Software - Hardware Interface
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● Write from SW
○ RegisterA: 1 byte

■ RegisterA[0]: Go
■ RegisterA[3:1]: Layer index 

○ RegisterB: 1 byte
■ RegisterB[7]: Whether read will return Done signal or classification value
■ RegisterB[3:0]: Address to read classification value

● Read from HW
○ RegisterC: 1 byte

■ Key counter for debugging
○ RegisterD: 1 byte

■ RegisterD[0]: Done signal
■ RegisterD[7:0]: Classification result



Compromises and Limitations
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● Input image scaling limited to 60x80 pixels
○ Only the upper 42x42 pixels are stored in memory

● Problem with increasing number of registers written/read through Avalon Bus
○ Only 2 write and 2 read addresses were used
○ Weight Memory starting address was not passed from SW but hardwired
○ Not able to add more functionalities (real-time comparison with SW results)

● 2 memories were mapped to 2 BRAMs each
○ Read by different modules both sequentially and combinationally



Thank you !


