
Pitch Perfect
A Hardware-Accelerated Real-Time

Phase Vocoder for Pitch Scaling

Sanjay Rajasekharan (sr3764), Maria Rice (mhr2154), Steven Winnick (shw2139)
Embedded Systems Design (CSEE4840), Spring 2024

THE TOOLS

What is Pitch Perfect?

● Phase vocoder algorithm
● CORDIC algorithm
● Intel FFT block

● A phase vocoder for real time pitch scaling
primarily through hardwareOUR GOAL

Phase Vocoder Algorithm (⅕)
Input
● Audio sample stream

● 16-bit integer values [0, 65,535)

● 48kHz sample rate

Windowing
● Input stream parsed into overlapping

“windows”

● 4096 samples each, 1024 “hop length”

● Process each window separately, then

recombine at the end

Phase Vocoder Algorithm (⅖)
First Hann
Window Scaling

● Samples in each window

scaled according to the

Hann Function

● Zero-indexed nth sample

in a window will be scaled

by a factor of

sin2(2𝜋n/4095).

Short-Time Fourier Transform
● Fourier transform is applied to each

window

Phase Vocoder Algorithm (⅗)
Pitch Shifting, pt. 1
● Each FFT bin has an expected

phase difference between

frames based on its center

frequency

● Observed phase difference gives

us a “fractional bin deviation”

from center

● Scale fractional bin number

based on scale amount (0, 4]

Phase Vocoder Algorithm (⅗)
Pitch Shifting, pt. 2
● Shift phase in new bin by

combining expected shift with

fractional bin deviation

● Add magnitudes of all inputs in

the same output bin

Phase Vocoder Algorithm (⅘)

Inverse Fourier Transform
● An inverse fourier

transform is applied to

each of the windows to

return them to the time

domain

Second Hann Window Scaling
● Repeat same Hann Function a second

time (to minimize artifacts in

synthesized sound)

● Allows for smoother blend between

discontinuous time-domain waveforms
.

Phase Vocoder Algorithm (5/5)

Window Stitching
● De-transformed

phase-adjusted windows

of samples are stitched

back together into a main

audio stream

● Done by adding half of

each sample’s windowed

value for all 4 windows it

appears in.

Output
● Outputs a stream of audio

● In our implementation, these will be

signed 16-bit integer values at a sample

rate of 48kHz

C-implementation

Python Simulation

● Python simulation that allowed
us to easily fine-tune details of
our algorithm, such as the
window size and hop length,
before implementing them in C.

C Fourier Transform

● 3 key functions
○ rearrange()
○ compute()
○ inverse()

C Real-time Streaming Algorithm

● Reads in samples from standard
input and emits the scaled
stream to standard output

● Allows it to connect to programs
to stream live audio to it and
playback its output as live audio

Shell Script

● Simple shell script that creates an
end to end pipeline for the
software simulation

C-implementation: example

Block Diagram

Hardware Schematic

Hardware Implementation (1/10)
Audio Clock
● Clock for all components that

interface with audio

● Configured at 12.288 MHz to work

with 48 kHz ADC and DAC

● Frequency is efficiently divisible by

audio sampling rate (factor of 28)

Hardware Implementation (2/10)
Audio and Video Config Core
● Initializes Wolfson Audio CODEC

● Communicates via 2-wire I2C serial bus: I2C_SDAT and I2C_SCLK to

board’s FPGA_I2C_SDAT and FPGA_I2C_SCLK

● 16 bit, left justified, 48kHz

● We interpret as Q’8.8

Hardware Implementation (3/10)
Audio Core
● Interface to Audio Codec

● “Streaming Mode” - we stream

values to/from its FIFO buffers,

and it handles timing them with

the ADC/DAC

Hardware Implementation (4/10)
Sampler
● Read samples of left from_adc to

a ring buffer (mono audio)

● Ring buffer holds 1 window + 1 hop

of samples (prevent overwriting

before use)

● Track start of current window to

tell next component

● Every hop, tell next component to

start applying Hann Window

Hardware Implementation (5/10)
First Hannifier
● Apply Hann Windowing function

to a window of samples

● sin2(2𝜋n/4095)

● Values stored in ROM

● Runs at base clock speed, so ring

buffer uses 2 clocks

Hardware Implementation (6/10)
FFT-er / IFFT-er
● Implemented Intel's FFT Engine for an

efficient Fourier Transform
● Parameters:

○ See image
● Testing:

○ Initial testing with example file in
QuestaSim.

● Wrapper Modules:
○ fft_wrapper.v: Manages input/output

signals and instantiates FFT module
○ control_for_fft.v: Generates control

signals and handles configuration
○ testbench.v: Verifies functionality

Polar Conversion:
CORDIC (Co-ordinate Rational Digital Computer)

● Cost effective way of computing trig

functions on hardware

● Algorithm is based on iteratively rotating

a point by an angle theta_k until the

point reaches 0

● if tan(theta_k) = 2^-k, then an update

rule can be established that doesn’t

involve multiplication

● X_(k+1) = X_k - Y << k

● Y_(k+1) = X_k + Y << k

Hardware Implementation (7/10)

Hardware Implementation (8/10)
Scaler
● Performs FFT bin movement

described earlier

● State machine: analysis read,

analysis write, synthesis

● Custom fixed-point multiplication

of different sizes

● Integer rounding of fractional bits

● Avoid modulus

Hardware Implementation (9/10)
Stitcher
● Apply second Hann Window

● Removes artifacts from

discontinuities

● First ¾: add ½ of windowed value

● Last ¼: overwrite with ½ of value

Hardware Implementation (10/10)
Emitter
● Write samples to both to_dac

(blocks otherwise)

● One hop at a time

● Runs at audio clock speed, so

prior buffer uses 2 clocks

What we learned

