Landscape Generator
Based on FFT 3D-Spectral Visualization

Yuxiao Qu (yq2381), Ning Xia (nx2173), Yucong Li (y15363), Yimin Yang (yy3352)

Contents
1 Project Overview 2
1.1 System Block Diagram L 2
1.2 Modules and Data Flow 3
1.2.1 Microphone to Audio Processor 3
1.2.2 FFT Calculation Process 3
1.2.3 Button Control Interface. 3
1.2.4 VGADisplay oo 4
2 Hardware 4
2.1 Audio e e 4
2.1.1 CODEC Interface i i 4
2.1.2 FFT Module 4
2.1.3 Memory Buffer 4
2.1.4 Button and Hex7Seg Display 5
2.2 FFT . . e 6
2.2.1 DIF FFT 6
2.2.2 Module Architecture L 9
2.2.3 Stage Architecture L 9
2.2.4 FFT Module Simulation 12
2.2.5 Bit Reverse Stage 14
2.2.6 Square Root Calculator 14
23 VGA Display 15
3 Hardware-Software Interface 17
3.1 wgapizel ... 17
3.1.1 Registers for vga_pixel 18
3.1.2 Functions e 18
3.1.3 Ioctl Handling (vga_pixel_ioctl) 18
3.2 aud. e e e 18
3.2.1 Registers foraud Lo 18
3.2.2 Functions 19
3.2.3 Ioctl Handling (aud_ioctl) 19

4 Software 19

4.1 Data Capture e 19
4.2 Waveform Generation 19
4.3 Displaying the Waveform o oo 19

5 Further Thoughts 20
6 Contribution 20
7 Reference 20
8 Appendix 21
8.1 Brief explanation for uploaded hardware file 21
8.2 Code for Hardware e 21
8.2.1 aud.SV e e e 21

8.2.2 wgapixel.Sv e 27

8.2.3 fftmain.sv e 30

1 Project Overview

This embedded system effectively integrates audio capture, real-time FFT processing, and in-
teractive data visualization, showcasing the capabilities of modern embedded systems in handling
complex tasks. The user-controlled visualization adds an extra layer of interactivity, making the
system not only functional but also engaging. Our system captures audio from a microphone,
processes it using Fast Fourier Transform (FFT), and visualizes the results as a dynamic wa-
terfall waveform on a VGA display. The system also features button controls that allow users
to adjust the visualization’s shape, providing a customizable and interactive experience. This
project demonstrates the integration of audio processing, real-time data visualization, and user
interaction within a single embedded platform.

1.1 System Block Diagram

The complete system, from audio input to VGA output, is illustrated in the following system
block diagram. The diagram details the connections between the primary functional units of the
system. The left side of the diagram represents the audio processing hardware, while the right
side depicts the control and visualization components. The Avalon Bus connects between the
two in the center. We will discuss each module and the data flow in detail in the subsequent
sections.

memory
(ramsw

—

— ——
v K,ﬁm \
b Screen Display

..........

Micophone | |

etz ANGLE

owrte2__ 86 M
Y bty vga_pixelsv — e Vel
Ve couners < =
<

Figure 1: Diagram of the Embedded System.

1.2 Modules and Data Flow

Below, we outline each data transition as depicted in the system block diagram, explaining
the data flow and transformations at each stage.

1.2.1 Microphone to Audio Processor

The system starts by capturing audio through an external microphone connected to the
Altera DE1 board. The audio signal is fed into the audio codec module, which is responsible
for digitizing the analog signal and sent it to the audio control module, preparing it for FFT
calculation after combined the stereo sound data into mono sound data. This module uses an
onboard analog to digital converter(ADC) to convert the analog audio input into a digital format.

1.2.2 FFT Calculation Process

The digitized audio data passed to the audio data process module. This module performs a
Fast Fourier Transform on the audio data to convert the time-domain signal into its frequency-
domain representation. The FFT results are crucial for visualizing the audio spectrum.

1.2.3 Button Control Interface

The audio control module interacts with the Button Control Interface, which allows users
to adjust the shape of the visualization. By pressing buttons on board, users can change the
angle of the waveform display from 30 to 60 degrees. The Button Control Interface updates the
visualization parameters stored in ANGLE register accordingly, providing a customized viewing
experience.

1.2.4 VGA Display

The output of the FFT Calculation module is sent to the avalon bus and stored in the
AUD_AMP register. This module is responsible for rendering the FFT results as a dynamic
waterfall waveform on a VGA display. The soft war process the audio data and the angle data
to calculate the current waterfall plot and display the new real time waterfall on the screen ac-
cordingly. The visualization provides a real-time graphical representation of the audio spectrum,
allowing users to observe frequency changes over time.

2 Hardware

2.1 Audio

The audio module of our FPGA project is designed to handle various aspects of audio pro-
cessing and display, consisting of several key components:

2.1.1 CODEC Interface

The CODEC (Coder-Decoder) interface is crucial for converting analog audio signals to digital
format and vice versa. This functionality is fundamental to bridging the gap between the analog
world of audio signals and the digital processing capabilities of the FPGA.

To achieve this, we utilize an existing CODEC driver that manages the interface effectively.
The module is configured to handle 24-bit output from the CODEC, specifically utilizing the
adc_left_out[23:0] and adc_right_out[23:0] signals. This setup allows us to capture high-resolution
audio data from both the left and right audio channels, ensuring detailed and accurate audio
processing.

2.1.2 FFT Module

The Fast Fourier Transform (FFT) module is designed to analyze and transform audio signals
from the time domain into the frequency domain. This transformation is essential for under-
standing the frequency components of the audio signal, which is a critical aspect of audio signal
processing.

While a more detailed description of the FFT module will be provided later, it is important
to note that this module is central to the frequency analysis and overall signal processing within
the audio module. The FFT module enables the conversion and examination of the audio data
in a way that reveals its underlying frequency characteristics.

2.1.3 Memory Buffer

The memory buffer plays a crucial role in storing the data processed by the FFT module for
subsequent use. Its primary purpose is to retain the transformed audio data so that it can be
accessed and utilized as needed for further processing or analysis.

The buffer is configured with a size of 512 x 42 bits. In this configuration, 42 bits represent
the length of each FFT output, while 512 denotes the number of samples processed. This
substantial buffer size ensures that there is ample storage capacity to handle the results of the
FFT calculations efficiently, allowing for smooth data management and retrieval.

During the software part of the read, there is a readaddress that is incremented by 1 from 0,
so that every time the software completes a 512-bit read, the readaddress is updated to 0, thus
completing the cycle.

bram_inst

clock]

K clk

bram

read_address

write_address

rite
ata in[23..0]

write_enable
data_in

data_out

bram

Figure 2: Block diagram of the memory Module

2.1.4 Button and Hex7Seg Display

This component is designed to offer user interaction and visualization capabilities directly on
the FPGA board. It plays a vital role in providing a user-friendly interface for adjusting and
viewing information.

The button functionality allows users to adjust the display angle, giving them control over
how the information is presented. This interactive feature ensures that users can tailor the
display to their preferences or requirements.

The Hex7Seg display complements this by visually representing the adjusted angle in a clear
and readable format. It translates the angle information into a hexadecimal display, making it
easy for users to interpret and understand the current settings.

The above is the overall design of the audio module, which as the main part of the hardware
design of our group plays a key role in collecting the sound data, processing the sound data and
transmitting the data results. The following is its block design:

aud_inst
avalon_slave_0|
ritedata[31..0] itedata
rite ite
ead read
ddress[15..0] address
addata[31..0] readdata
ipselect chipselact
clock]
I3 clk
reset]
eset reset
aud|
UD_ADCDAT adedat
UD_ADCLRCK adelrek
UD_BCLK belk
|4UD_DACDAT dacdat
UD_XCK
xek
UD_DACLRCK daclrek
fpgsl
GA_12C_SCLK
ize_sclk
PGA_|2C_SDAT ize_sdat
hexl
EX1[6..0] hex1
hex2|
EX2[6..0] hex2
hex3|
EX3[6..0] hex3
hex0|
EXO0[6..0] hexo
hexd4l
EX4[6..0] hexd
hex5|
EX5[6..0] hexs
ey
EY[3..0] key
bram_control
ram_data in[23..0] data_in
ram data out[23..0] date_ol-lt
ram_ra[ls..0] read_address
ram wa[l15.0] ite_address
ram_write ite_enable
aud

Figure 3: Block diagram of the Audio Module

2.2 FFT
2.2.1 DIF FFT

Fourier analysis converts a signal from its original domain to a representation in the fre-
quency domain. It is an useful analytical in many applications in digital signal processing. In
real signal processing tasks, the input function can be any quantity or signal that varies over
time. Therefore, in order to better analyze the input signals, a common way is to taking mea-
surements at regular intervals, so that the continuous signal can be sampled into a set of discrete
values. Then the finite sequence of equally spaced samples of a function can be converted into
a sequence of coefficients representing the signal’s frequency components. That is the Discrete
Fourier Transform(DFT). The DFT can be seen as a sampled version of the Fourier Transform.
To simplify the computations of the DFT, the Fast Fourier Transform(FFT) algorithm was pro-
posed to compute the DFT. The basic idea of FFT is based on decomposition and breaking the
transform into smaller transforms and combining them to get the total transform.

According to their different decomposition, FFT algorithms can be classified into two different

types: Decimation in Time FFT (DIT FFT) and Decimation in Frequency FFT(DIF FFT). The
DIT FFT algorithm splits the input sequence (time domain) into smaller sequences based on
even and odd indices. The DIF FFT algorithm splits the output sequence (frequency domain)
into smaller parts based on even and odd indices. In our project, we implemented a DIF FFT
block in our data processing. The derivation of the DIF radix-2 FFT begins by splitting the
DFT coefficients X[k] into even- and odd-indexed values. The DFT of the N-point signal x[n]
can be written as:

N-1 N-1
X[k] =Y aln]-WRF+) aln] - WR* (1)
Sven ad
, which can also be written as
| S
X[=Y alzn] WEF+ Y wlon 1] wEDR (2)
n=0 n=0
The even values the given by:
N-1 N-1
X[2K =) aln] - W™ =3 aln] - WE' (3)
n=0 n=0

Splitting this sum into the first N/2 and second N/2 terms gives:

5-1 N-1
X2k =" Wk + > a[n) Wi
— 2 N 2
n=0 n=4
¥ ¥ N N
_ kn s k("+7)
= _Ox[n]W% + va[n—k Q]W’QV
n= n=4
Eiy ¥ (4)
N
= el Yo [t | Wy
n=0 ? n=0

Il
7 N
2
S,
|

8
—
S
|
| =
—_ | —

N——

That is, the even DFT values X [2k] for 0 < 2k < N — 1 are given by the £-point DFT of
the &-point signal z[n] + z[n + 5.
Similarly, the odd values can be given by:

-1

w|2

X[2k+1]= > z[n W Zx
=0 n=%
= iol (w[n] +x {n +];TD W]J,W%” (5)
=DF

ry o o 2])

That is, the odd DFT values X |2k + 1] for 0 < 2k+1 < N — 1 are given by the %—point DFT
of the &-point signal Wg (z[n] — z[n +).

*[0] o]
X

1] X 4]

%2 - H X2
X X Ilﬂ. o

*]3] iOE XE]

x[d] - 1)
w! 4

¥[5] % a S 5]

w

x[6] . o X3
w? W' :

*[7] - - 7]

Figure 4: The illustration of the DIF radix-2 FFT

Based on this concept, the flowchart of DIF FFT for an 8-point DFT is illustrated in the
Figure 4 above. N-point DFT is decomposed into N/2-point DFTs repeatedly. And the 2-point
DFT consists of two parts: 1) Butterfly 2) The twiddle factors. Unlike the DIT FFT, the output
of DIF FFT is bit-reversed order and the input is natural order. So the butterfly operation flow
graph is showed in Figrue 5. There are 2 complex additions and 1 complex multiplication in
each stage. Unlike the DIT-FFT, the multiplication is done after additions.

N
x[n])) x[n]+x[n+§]

Wy N
xn+—]0 > y—=e W,C‘(x[n]—x[n+§])
-1

Figure 5: The flow graph for butterfly operation

2.2.2 Module Architecture

In this project, we applied a DIF FFT with a 32-bit input structure, as illustrated in Figure
6. The first 16 bits represent the real portion of the sample data, while the second 16 bits are the
imaginary portion of the sample data. The real portion of the input is derived from the output
data from audio CODEC, which produces a 24-bit signal. Then we take the first 16 bits as the
audio real part input. The imaginary portion of the input data is padded with 16’b0.

32-bit Input l Real part l Imaginary part

Audio [23:8) 1600

512-point DNF FFT

i_cle2
_—
4.2-bp
owtpht I_dets 42 bt output
) ———
Bit
a_wpe Lsync | Rewverse |T-9NC
ien
Br_start
—

Figure 6: Diagram of the FFT Module

A. FFT Stage Processing

In each stage, the data undergoes a butterfly operation, which includes addition and subtrac-
tion. Then, the difference between the two samples is multiplied by the corresponding coefficient,
i.e., the twiddle factor. The complex multiplication follows the Karatsuba algorithm, which can
improve the efficiency of multiplication compared with traditional multiplication methods.

The output of the previous stage serves as the input of the next stage. Additionally, there
is a sync signal to signify that the output of the stage is valid data. The o_sync signal is set to
1 (true) when the output data o_data corresponds to the start of a new block of data after a
complete FFT stage has been processed.

B. Output Data Format and Bit-Reversal

The output of the FFT block is 42 bits. The first 21 bits represent the real portion, while
the second 21 bits are the imaginary portion. In the last stage, the o_sync is set to 1 when
the values of the butterfly then match the first sample out of the stage. It indicates the start
of the valid data. Then the 42-bit output data from FFT enters the bit reverse stage. As is
mentioned before, the output of DIF FFT is bit-reversed order and the input is natural order.
Therefore, the output of the FFT operation should be bit-reversed to be reordered before being
implemented in other modules.

2.2.3 Stage Architecture

A. Butterfly Operation

i_sample

N

\ {'(u'ﬂir'il'hr TR0

i
Delay, and
ahift by -2

-

IMF Butterfly
]

@@

\gf

10 data

Figure 7: The block diagram for each stage in the FFT

The butterfly operation includes an addition and a subtraction. Based on the description of
DIF FFT mentioned before, the operation in the FFT stage can be simplified as:

O,=A+B (6)
O, =(A-B)xC (7)
in which A and B are the complex input and C is the complex twiddle factor. So the input

of the stage undergoes an addition and subtraction first, just as showed in the code snipping in
the Figure 8 below.

10

always @ (posedge i clk)

e a)
begin
t 2m | laft:
P oofm | T '
= |
<= r laft ¢ + hit
i €m ¢ laft + 1]
1 L= - sk
1 L] = 1k
r 4m r coaf[(/®CWIDTH=1} :CWIDTH] ;
{ | wm @l [ACWIDTH=1}20]:
end

Figure 8: Code snipping of the addition and subtraction

B. Coefficient — Twiddle Factor

The twiddle factor in FFT is defined as

Wi = e /5 (8)

where N is the size of the FFT, n is the index of the twiddle factor for the specific stage.
They are used to shift the frequency components in the FFT. As for each stage, the N is a known
and fixed number, so the twiddle factors can easily be pre-computed and stored in lookup tables.
This improves the efficiency of the FFT. Similar as the format of the input and output, the upper
bits are the real portion of the twiddle factors and the lower bits are the imaginary part.

C. Fast Multiplication Algorithm

In each stage in this module, complex multiplication is performed where the difference be-
tween the two input samples is multiplied by the pre-stored twiddle factors. To execute the
multiplication effectively, the Karatsuba algorithm is applied here.

Consider the multiplication of two complex numbers: M = my 4+ jms and N = ny + jns.
The standard calculation involves:

M xN=my-ng—mg-ng+j(my-ngs+mg-nq)

So, there will be 4 multiplications. However, the Karatsuba algorithm can simplify this
process. The basic idea of the algorithm is ’divide and conquer’. Three products P1 = my -
ny; P2=mgy-ng; P3=(mj+ms)-(n1+nsg) are required to calculate. The final multiplication
result is then given by:

M x N = (P1—P2)+j-(P3— Pl —P2)

So, instead of 4 multiplications, only 3 multiplications are needed in this algorithm, which
can save hardware resources.

Therefore, the multiplication here follows this concept. Specifically, the products are calcu-
lated as rp_one, rp_two, and rp_three in the code below in the Figure 9:

Pr=(a1—b1) 1

11

Py = (a2 —b2) - c2
P3 = [(al — bl) + ((12 - b2)} . (Cl + Cg)

always @ (posedge i clk)
if (i ce)
begin
/J/ Second lock, pipeline 1
ple in <= ir coef r;
p2c_in <= ir coef i;
pld_in <= r dif r; -
p2d_in <= r dif i; 12 -b
p3c_in <= ir coef i + ir coef r; // cl+c2
p3d in <= r dif r + r dif i; //al-bl+a2-b2
end

bl

/{ Perform 1ir multiplia:

always @ (posedge i clk)
if (i ce)
begin
f/ Third clock, pip¢
'y As desired, 1 of these nes infers a DSP4
rp _one <= plc in * pld in;
rp_two <= pldc in * p2d in;
rp_three <= p3c _in * p3d in;
end

Figure 9: Code snipping for multiplication based on Karatsuba algorithm

2.2.4 FFT Module Simulation

In order to check the correctness of the 512-point FFT block, we use a testbench where a
series of audio input and the FFT block are simulated on an EDA platform. The simulation
waveform results are checked with the mathematical FFT output. The simulation output values
are scaled down by a factor of 16 compared to the mathematical FFT results. Figure 10 shows
the input in the testbench. Figure 11 shows the mathematical referenced FFT calculation results
with the same input. Figure 12 shows the output waveform from the simulation.

//Test stimulus
initial begin

// Test Case 1

i sample = {16'd , ' }; #
i sample = {16'd100, 'd0}; #4
i sample = {16 , A0 #

Figure 10: Testbench for audio input simulation

12

Real Imput

It

Chear Heal Input

||-'I-EFE.'|IT|-EH‘|I'

Llear Imag Input

Sehect FFT Magnatude oulpat umits for graphical display [DESETRCH

Sehect FFT Phase output LUinits for graphecal desplay

B Check for IFFT - uncheck for FFT

Sampding frequency

al2

Real Output

140700. 000000
23066. 751880
—10899. 929489
8690. 813517
—8599. 746518
23955. 685078
1348. 520310
—1690. 168492
2973. 580806
—4426. 011660

Figure 11: The mathematical input and output of FFT

Imaginary Output

0. 000000
01507. 323969
718. 880094
4801. 117177
10036. 935824
641. 786153
9501. 691931
—-1160. 770935
3473. 238834
2794. 018384

13

Figure 12: The simulation results of the FFT block

2.2.5 Bit Reverse Stage

The bit reversal in this module is achieved with a memory, as illustraed in the Figure 13.
For this project, the output of the FFT calculation is 512 42-bit samples. So the size of the
memory used to store these data is 29. The wraddr keeps track of the current write address
in the memory. The rdaddr is used to read the data from memory in bit-reversed order. The
rdaddr (read address) is the bit-reversed version of wraddr (write address). On each clock cycle
where i_ce is high, data i_in (the raw output from the FFT) is written to the memory at the
current wraddr. After the writing, data is read from the memory at the address specified by
rdaddr and assigned to o_out. When the data has been processed, the o_sync is asserted to 1 to
signal that the data is valid and corresponds to the first sample out of the stage.

wraddr Memory rdaddr

i_clk2 0000 0000
0001
42-bit output
42-biti_data 0010 P
: O_Sync
i_sync 0100 10— Y
1000
i_ce &br_start

Figure 13: The block diagram for the bit reversal

2.2.6 Square Root Calculator

The square root operation that needs to be used when integrating the real and imaginary
parts after the fft output for the effective value calculation. In this function we use the bit by
bit to determine the answer to effectively avoid the square operation, only the use of bitwise
operations and signed numbers can be added and subtracted to get the result.

The bitwise square root algorithm is a hardware-efficient method for calculating the square
root of a number using bit shifts and comparisons. This technique involves initializing with the
input number and iterating from the most significant bit (MSB) to the least significant bit (LSB)
to progressively determine each bit of the square root. The process begins by shifting the input
number left and setting a divisor aligned with the MSB. For each bit position, the algorithm tests
whether setting the corresponding bit in the result keeps the squared value less than or equal
to the input number. If successful, it updates the result and subtracts the squared value from
the input number. This bitwise approach relies on simple bit shifts and arithmetic operations,

14

making it highly suitable for efficient hardware implementation, especially in FPGA or ASIC
designs where resource optimization and speed are crucial.

Input: X=81111881 (decimal 121)
Step A Description
00060000 61111681 cocescee Starting values.

fogee0el 11108180 Left shift X by two places into
66000008 Set T =A - {0,01}: 81 - 1.
Left shift Q.
28060000 Is Tz8? Yes. Set A=T and Q[@]=1.

80808011 18010000 Left shift X by two places into
11111108 Set T=A - {Q,01}: 11 - 181.
Left shift Q.

Is Tz@? No. Move to next step.

20801116 oleoo0ae Left shift X by two places into
Qeeee1el Set T =A - {Q,01}: 1118 - 1eei

Left shift Q.
aegaelal Is Tz8? Yes. Set A=T and Q[@]=1.

80816161 epoo0oBae Left shift X by two places into A.
oec0ee00 Set T = A - {Q,01}: 18101 - 1e1e1l.
Left shift Q.
06800000 Is Tz8? Yes. Set A=T and Q[@8]=1.

Figure 14: Example of square root algorithm

2.3 VGA Display

In the VGA section of our design, we have carefully considered the need to process and display
a full image to capture the intricate details and complexities of our output results. To achieve
this, we must read and handle all pixel points of the image, as using only a limited amount of
data would be inadequate for accurately reflecting the rich features of our display. Therefore, we
have opted for a memory configuration that accommodates a resolution of 640 x 400 pixels, with
each pixel represented by an 8-bit grayscale value. This configuration provides ample storage
and enables us to effectively read and render a grayscale image of this size, ensuring that the
visual representation is both detailed and precise. The visual effect is as follows:

15

|

pixel_values[400][640]

Figure 15: VGA display demonstration

To further enhance visual performance and maintain a high refresh rate, which is crucial for a
smooth and dynamic display, we have employed an advanced data handling technique that reads
four pixels simultaneously. This method significantly boosts the speed of data transfer between
the hardware and software components of our system. By reading multiple pixels in parallel,
we reduce the time required for data access and update, which translates into a smoother and
more fluid screen refresh. This efficient management of memory access and data exchange not
only accelerates performance but also improves the overall user experience by delivering a more
responsive and visually appealing display.

16

storage_inst

clock]
ok clk
reset
ieset reset
read
agdress read[16..0] address
write
‘j:éidress write[16..0] § .. .

avalon_slave 0
ata in[31..0]
ias[1..0]
ata out[7..0]

writebyteenable_n

writebyteenable_n
readdata

ena

ead ena
- read
rite ena .
write

storage

Figure 16: The block diagram for the VGA

3 Hardware-Software Interface

At the core of this design are memory-mapped registers, which serve as direct communication
channels between the software and the underlying hardware. By mapping specific memory ad-
dresses to hardware functions, the software can read and write data to these registers, effectively
controlling hardware behavior and monitoring its status.

Bits
ndress| 31] 30] 29] 28] 27] 26] 25 24] 23] 22] 1] o[9] 6] 17 18] 15[1a] 1a] 2] 1 10] 6] o] 7] 6] 8] 4 o[o] 4] 0

8-bit pixel value wiite 4 pixel color data

0 8-bit pixel value 8-bit pixel value 8-bit pixel value

vga_pixel

16-bit x-axis 16-bit y-axis write pixel axis data
I A N e

Aud

1
2
3

32-bit aud data read hardware aud data

Figure 17: Register Map
3.1 wga_pixel

For the VGA display, the design includes two key registers: one dedicated to storing pixel
color values and another for pixel positioning. This segmentation allows the software to precisely

17

control both the color and placement of each pixel on the screen, which is crucial for generating
accurate and dynamic visualizations of the audio data. The software sends pixel colors and
positions to vga hardware by writing them to registers.

3.1.1 Registers for vga pixel

e Address 0: This register is divided into four 8-bit sections, each representing the pixel
values for a VGA display. These values correspond to the intensity or color of the pixels
displayed on the screen. We store pixel values in a packet of 4 for efficiency.

e Address 1: This register is used for positioning on the VGA display. The upper 16 bits
(bits 31-16) represent the x-axis, and the lower 16 bits (bits 15-0) represent the y-axis.
This allows the software to specify a pixel’s position on the screen.

3.1.2 Functions

e write_background(vga_pixel_color_t *background): Writes the luminance value to the
background color register and updates the background field in the vga_pixel_dev struc-
ture.

e write pixel(vga_pixel_axis_t *position): Writes the pixel position to the axis register
and updates the position field in the vga_pixel_dev structure.

3.1.3 Ioctl Handling (vga_pixel_ioctl)

This function handles ioctl commands from user-space applications:

e VGA_PIXEL WRITE BACKGROUND: Copies data from user space, writes it to the background
register, and updates the device structure.

e VGA_PIXEL _READ BACKGROUND: Copies the current background color data back to user space.

e VGA_PIXEL WRITE POSITION: Copies data from user space, writes it to the position register,
and updates the device structure.

e VGA_PIXEL_READ_POSITION: Copies the current position data back to user space.

3.2 aud

In the audio subsystem, the interface is designed to handle 32-bit audio data, which the
software reads a dedicated register. This data is then processed by the software to calculate
waveforms based on processed audio data and updated angle data.

3.2.1 Registers for aud
e Address 2: This register holds the angle data which determines the rotation of waveforms.

e Address 3: This register stores the 32bit audio data processed by fft hardware module.

18

3.2.2 Functions

o read memory(aud mem_t *memory): Reads data from the AUD_AMP register and stores it in
the provided memory structure.

e read_angle(aud mem t *memory): Reads data from the ANGLE register and stores it in the
provided memory structure.

3.2.3 Ioctl Handling (aud_ioctl)
This function handles ioctl commands from user-space applications:
e ANGLE_READ DATA: Copies the current angle data back to user space.

e AUD_READ DATA: Copies the current audio data back to user space.

4 Software

4.1 Data Capture
e Audio Data Acquisition

The program continuously captures audio data from the hardware using the get_aud_data(aud_f£d)
function. This data represents audio signals that are being processed or captured by the
hardware.

e Angle Data Acquisition

It also retrieves an angle value using get_angle data(aud_fd), which is used to adjust the
visualization of the waveform. This angle likely represents a rotation or tilt of the waveform
display.

4.2 Waveform Generation

e Frames and CUR Arrays The program uses two 2D arrays (Frames and CUR) to store
and process the waveform data. Frames holds the audio data captured over time, while
CUR is used to store the current state of the waveform to be displayed on the screen.

e Waveform Calculation The f(int** CUR, int** Frames, int ang) function calcu-
lates the waveform’s position on the screen based on the audio data and the angle. It
performs transformations on the data to create a visual representation of the waveform
that takes the specified angle into account.

4.3 Displaying the Waveform

e Pixel and Background Setting The program clears the screen and then iteratively sets
the pixel positions and their respective colors based on the calculated waveform data. The
pixel color intensity is derived from the amplitude of the audio signal, and the position is
determined by the processed coordinates.

e Screen Refresh The screen is refreshed in a loop, where new audio data is continuously
captured, processed, and displayed. This loop runs until a predetermined number of frames
have been processed (FRAMENUMBERS). The old waveforms are moved left and decommis-
sioned, then new waveforms are incorporated on the right.

19

5 Further Thoughts

In this project, our hardware development journey began with exploring how to handle audio
input on an FPGA using a CODEC interface. This foundational step provided us with a deep
understanding of audio signal processing and interfacing. We then advanced to implementing the
Fast Fourier Transform (FFT) module, which allowed us to delve into complex operations like
the butterfly algorithm and state machines, crucial for accelerating hardware operations. These
experiences were complemented by utilizing input/output interfaces from previous lab sessions,
which deepened our grasp of practical data handling and memory management.

We also gained valuable insights into managing data transfer and memory operations, partic-
ularly how interrupts trigger data read and write processes. Transitioning from using pre-existing
code to designing our own data transfer mechanisms marked a significant advancement in our
skills. The project not only enhanced our technical expertise but also improved our teamwork, as
we moved from experiencing slow and error-prone screen refreshes to achieving faster and more
accurate performance. The collective efforts of the team were crucial to this progress.

However, there are areas for improvement. The FFT results, while correct in simulation,
exhibit inaccuracies in the hardware implementation, possibly due to issues with sampling time or
delays between software samples. Additionally, optimizing the software code for image generation
could enhance the visual transition between consecutive waveforms, resulting in smoother and
more aesthetically pleasing displays. Furthermore, increasing the efficiency of data transfer
between hardware and software could further boost the display frame rate, improving overall
performance.

6 Contribution

In this project, Yuxiao Qu and Ning Xia focused on the design of the hardware-software
interface and the software part.

Yucong Li and Yimin Yang were responsible for microphone configuration, audio processing,
FFT operation, and VGA display in the hardware part.

7 Reference

[1] THE FAST FOURIER TRANSFORM (FFT). (n.d.-a). https://eeweb.engineering.nyu.
edu/iselesni/EL713/zoom/fft

[2] Dan Gisselquist (2017). A Generic Piplined FFT Core Generator. https://github.com/
ZipCPU/dblclockfft/tree/master

[3] Square-root-in-verilog, https://projectf.io/posts/square-root-in-verilog/

[4] Digital Signal Processing Principles, Algorithms and Applications by J.G. Proakis and D.G.
Manolakis page-464

20

8 Appendix

8.1 Brief explanation for uploaded hardware file

A brief explanation of the hardware files:

audio_driver.sv is the hardware file for audio CODEC interface configuration.

aud.sv is one of the core hardware files that have multiple functions in it including audio data
controlling and processing, instantiating the FF'T block and square root calculation of the FFT
results.

vga_pizel.sv is the file related to plotting data visualization figures pixel by pixel on the VGA.
fftmain.sv is the top level FFT file.

fftstage.sv calculates one FFT stage

hwbfly.sv implements a butterfly that uses the * operator for its multiply

Longbimpy.sv is the logic binary multiply.

Bimpy.sv multiplies a small set of bits together. It is a component of longbimpy

gtrstage.sv is the 4-pt stage of the FFT

laststage.sv is the 2-pt stage of the FFT

bitreverse.sv, the final step in the multiply, bit-reverses the outgoing data.

8.2 Code for Hardware

8.2.1 aud.sv

‘include "global_variables.sv"
‘include "./AudioCodecDrivers/audio_driver.sv"

//‘define RAM_ADDR_BITS 5°d16
//‘define RAM_WORDS 16°d48000

// T-Seg dispaly for debugging
module hex7seg(input logic [3:0] a,

output logic [6:0] y);
always_comb

case (a) // gfe_dcba
4°h0: y = 7’b100_0000;
4°hil: y = 7’°b111_1001;
4°h2: y = 7’°b010_0100;
4°h3: y = 7’b011_0000;
4°h4: y = 7’°b001_1001;
4°h5: y = 7’°b001_0010;
4°h6: y = 7’b000_0010;
4°h7: y = 7°b111_1000;
4°h8: y = 7’b000_0000;
4°h9: y = 7’b001_0000;
4°hA: y = 7°b000_1000;
4°hB: y = 7’b000_0011;
4°hC: y = 7’b100_0110;
4°hD: y = 7°b010_0001;
4’hE: y = 7’b000_0110;

21

4’hF: y = 7’b000_1110;
default: y = 7’b111_1111;
endcase
endmodule
module audio_control(
input logic [3:0] KEY, // Pushbuttons; KEY[0] is rightmost
// T-segment LED displays; HEXO is rightmost
//output logic [6:0] HEXO, HEX1, HEX2, HEX3, HEX4, HEX5,

//Audio pin assignments
//Used because Professor Scott Hauck and Kyle Gagner

output logic FPGA_I2C_SCLK,
inout FPGA_I2C_SDAT,
output logic AUD_XCK,

input logic AUD_ADCLRCK,
input logic AUD_DACLRCK,
input logic AUD_BCLK,
input logic AUD_ADCDAT,
output logic AUD_DACDAT,

//Driver IO ports

input logic clk,
input logic reset,
input logic [31:0] writedata,
input logic write,
input logic read,
input chipselect,
input logic [15:0] address,
output logic [31:0] readdata,
output logic [6:0] HEXO, HEX1, HEX2, HEX3, HEX4, HEXS5,
//Bram controls
output logic [15:0] bram_wa,
output logic [15:0] bram_ra,
output logic bram_write = O,
output logic [23:0] bram_data_in,
input logic [23:0] bram_data_out
)
//Audio Controller
reg [23:0] dac_left_in;
reg [23:0] dac_right_in;

logic [23:0] adc_left_out;
logic [23:0] adc_right_out;

reg [20:0] sqr;
// wire advance;

//Device drivers from Altera modified by Professor Scott Hauck and Kyle Gagner in

Verilog
audio_driver aDriver(

22

.CLOCK_50(c1k),

.reset (reset),
.dac_left(dac_left_in),
.dac_right(dac_right_in),
.adc_left(adc_left_out),
.adc_right(adc_right_out),
.advance (advance) ,
.FPGA_TI2C_SCLK(FPGA_I2C_SCLK),
.FPGA_TI2C_SDAT (FPGA_I2C_SDAT),
.AUD_XCK (AUD_XCK),

.AUD_DACLRCK (AUD_DACLRCK) ,
.AUD_ADCLRCK (AUD_ADCLRCK) ,
.AUD_BCLK (AUD_BCLK) ,
.AUD_ADCDAT (AUD_ADCDAT) ,
.AUD_DACDAT (AUD_DACDAT)

);

//Instantiate hex decoders
logic [23:0] hexout_buffer;

reg [15:0] ra = O,wa = 0;
reg [23:0] rd,wd;

reg wena = O,rena = 0;
logic clk_2;

twoportbram Bram(
.clk(clk_2),
.reset (reset),
.ra(ra),

.wa(wa),
.write(wena),
.read(rena),
.data_in(wd),
.data_out(rd)

);

hex7seg h5(.a(angle[5:4]1),.y(HEX5)), // left digit
h4(.a(angle[3:0]),.y(HEX4)),
h3(.a(0),.y(HEX3)),
h2(.a(0),.y(HEX2)),
hi(.a(0),.y(HEX1)),
ho(.a(0),.y(HEXO0));

//Convert stereo input to mono
logic [23:0] adc_mono;

logic [23:0] buffer;

logic [25:0] CC = 26’b0;
logic [31:0] CC2 = 32’bl;
logic [5:0] angle = 6°d45;
//debounce

23

always_ff @(posedge clk)begin
logic ena0 = 1,enal = 1;
logic [31:0] presstimeO,presstimel;
CC2 <= CC2 + 1;
if (CC2 == 32’hffffffff) CC2 <= 1;
if (KEY[0] == 0 && ena0 == 1) begin
presstime0 <= CC2;
if (angle < 6°d60) angle <= angle + 1;

end

if (CC2 < presstimeO + 1 || KEY[0] == 0) begin
enal0 <= 0;

end else begin
enal <= 1;
presstime0 <= 0;

end

if (KEY[1] == O && enal == 1) begin
presstimel <= CC2;
if (angle > 6°d30) angle <= angle - 1;

end

if (CC2 < presstimel + 1 || KEY[1] == 0) begin
enal <= 0;

end else begin
enal <= 1;
presstimel <= 0;

end

end

logic [3:0] bram_input_ctrl;
logic [23:0] result_buffer;
logic [23:0] adc_out_buffer;

logic write_clk;
logic left_£fft_ce;
logic left_fft_o_sync;

logic [41:0] o_result;
logic[15:0] inp;

reg [23:0] Ctst = 0;
logic cena = 1;

assign left_fft_ce = 1;
assign clk_2 = CC[13];
assign wd = {3’b0, sqr};

fftmain left_fft(
.i_clk(clk_2),
.i_reset(reset),
.i_ce(left_fft_ce),
.i_sample({adc_mono[23:8], 16°b0}),
.o_result(o_result),
.o_sync(left_fft_o_sync));

function [23:0] A;

input [23:0] num; //declare input

24

//intermediate signals.
reg [23:0] absn;
begin
if (num[23] == 0)
absn = {1’b0,num[23:1]};
else
absn = {1’b1,num[23:1]};
A = absn;
end
endfunction //end of Function
function [20:0] sqrt;
input [20:0] numi; //declare input
input [20:0] num2;

//intermediate signals.
reg [20:0] absnl,absn2;
logic [41:0] nl = 0,n2 = O;
reg [41:0] a;
reg [23:0] q;
reg [25:0] left,right,r;
begin
//do square
if (num1[20] == 0)
absnl = numil;
else
absnl = -numl;
if (num2[20] == 0)
absn2 = num?2;
else
absn2 = -num2;
for(integer i = 0; i < 20; i++)begin
if (absni[il)
nl += absnl << i;
if (absn2[i])
n2 += absn2 << i;
end
//initialize all the variables.
a = nl + n2;
q=0;
left = 0; //input to adder/sub
right = 0; //input to adder/sub
r = 0; //remainder
//run the calculations for 16 iterations.
for(integer i = 0; i < 21; i++) begin
right = {q,r[25],1°b1};
left = {r[23:0],a[41:40]%};
a = {a[39:0]1,2°b00}; //left shift by 2 bits.
if (r[25] == 1) //add if r is negative
r = left + right;
else //subtract if r is positive
r = left - right;
q = {q[22:0],!r[25]};
end

25

sqrt = q; //final assignment of output.
end
endfunction //end of Function

always_comb begin

sqr = sqrt(o_result[20:0],0_result[41:21]);
buffer = rd;
//buffer = A(adc_mono);

end

//Determine when the driver is in the middle of pulling a sample
//by default dont use the BRAM module

logic bram_writing = 0;

logic bram_reading = 0;

logic [31:0] driverReading = 31°d0;

logic [15:0] 1limit;

always_ff Q@(posedge clk) begin
adc_mono <= A(adc_right_out + adc_left_out);
//adc_mono <= adc_left_out;
CC += 1;
end

always_ff Q(posedge clk_2) begin
if (wena) wa += 1;
end

always_ff @(posedge clk) begin : IOcalls
// ioread recieved
//adc_mono <= adc_left_out;
if (chipselect && read) begin
case (address)
16°h0002: begin
readdatal[31:6] <= 0;
readdata[5:0] <= angle;
end
16°h0003 : begin
rena <= 1;
wena <= 1;
ra <= ra + 1;
// return padded buffer
if (buffer[23] == 1) begin
readdata[23:0] <= buffer[23:0];
readdata[31:24] <= 8’bi11111111;
end
else if (buffer[23] == 0) begin
readdatal[23:0] <= buffer[23:0];
readdata[31:24] <= 8’b00000000;
end

end

endcase
end

26

end

wire sampleBeingTaken;
assign sampleBeingTaken = driverReading[O0];

//Map timer (Sample) counter output
parameter readOutSize = 16’hffff;
//Sample inputs/Audio passthrough

endmodule

8.2.2 wga_pizel.sv

/*
* Avalon memory-mapped peripheral that generates VGA
* Columbia University

*/

module vga_pixel(input logic clk,
input logic reset,
input logic [31:0] writedata,
input logic write,
input chipselect,
input logic [7:0] address,

output logic [7:0] VGA_R, VGA_G, VGA_B,

output logic VGA_CLK, VGA_HS, VGA_VS,
VGA_BLANK_n,

output logic VGA_SYNC_n) ;

logic [10:0] hcount;
logic [9:0] vcount;

logic [7:0] background_r;
logic [15:0] h,v;
logic read_ena = 0, write_ena = 1;

logic [16:0] address_read, address_write;
logic [31:0] data_in;

logic [7:0] data_out;

logic [7:0] vgalum;

logic [18:0] temp_add;

logic [7:0] 1um[3:0];

logic [1:0] Dbias;

vga_counters counters(.clk50(clk), .*);

memory mem(.*) ;

27

always_ff @(posedge clk)begin
if (chipselect && write)

case (address)

4°h0 : begin
data_in <= writedata;
write_ena <= 1;

end

4’hl : begin
h <= writedata[31:16];
v <= writedatal[15:0];

end

endcase

address_write <= (v * 640 + h) >> 2;
if (write_ena == 1) write_ena <= 0;

end
reg [31:0] temp;

always_ff Q@(posedge clk)begin

address_read = (vcount * 640 + hcount[10:1]) >> 2;

bias = hcount[10:1] % 4;

read_ena = (vcount * 640 + hcount[10:1] < 256000 && hcount[10:1] > O && hcount[10:1]
<632) 71 : 0;

{VGA_R,VGA_G,VGA_B} <= {data_out, data_out, data_out};

end

endmodule

module vga_counters(

input logic clkb0, reset,

output logic [10:0] hcount, // hcount[10:1] is pixel column
output logic [9:0] vcount, // vcount[9:0] is pixel row

output logic VGA_CLK, VGA_HS, VGA_VS, VGA_BLANK_n, VGA_SYNC_n);
/*
* 640 X 480 VGA timing for a 50 MHz clock: one pixel every other cycle
*
* HCOUNT 1599 0 1279 1599 0
X
¥ ____ | Video | __ | Video
*
*
* |SYNC| BP |<-- HACTIVE -->|FP|SYNC| BP |<-- HACTIVE
*
* | VGA_HS [
*/
// Parameters for hcount
parameter HACTIVE = 11’d 1280,
HFRONT_PORCH = 11°d 32,
HSYNC = 11’4 192,
HBACK_PORCH = 11°’d 96,
HTOTAL = HACTIVE + HFRONT_PORCH + HSYNC +

HBACK_PORCH; // 1600

28

// Parameters for vcount

parameter VACTIVE = 10’d 480,
VFRONT_PORCH = 10’4 10,
VSYNC = 10’4d 2,
VBACK_PORCH = 10’d 33,
VTOTAL = VACTIVE + VFRONT_PORCH + VSYNC +

VBACK_PORCH; // 525
logic endOfLine;

always_ff @(posedge clk50 or posedge reset)

if (reset) hcount <= 0;
else if (endOfLine) hcount <= 0;
else hcount <= hcount + 11°’d 1;

assign endOfLine = hcount == HTOTAL - 1;
logic endOfField;

always_ff @(posedge clk50 or posedge reset)
if (reset) vecount <= 0;
else if (endOfLine)
if (endO0fField) vcount <= 0;
else vcount <= vcount + 10’d 1;

assign endOfField = vcount == VTOTAL - 1;

// Horizontal sync: from 0x520 to Ox5DF (0x57F)
// 101 0010 0000 to 101 1101 1111
assign VGA_HS = !((hcount[10:8] == 3’b101) &
! (hcount [7:5] == 3°b111));
assign VGA_VS = !(vcount[9:1] == (VACTIVE + VFRONT_PORCH) / 2);

assign VGA_SYNC_n = 1°b0; // For putting sync on the green signal; unused

// Horizontal active: O to 1279 Vertical active: 0 to 479

// 101 0000 0000 1280 01 1110 0000 480

// 110 0011 1111 1599 10 0000 1100 524

assign VGA_BLANK_n = !(hcount[10] & (hcount[9] | hcount[8])) &
'(vecount[9] | (vcount[8:5] == 4°b1111));

/* VGA_CLK is 25 MHz
*

* clkb0 __| [__I [I__I

*

*

* hcount [0]__| o |

*/

assign VGA_CLK = hcount[0]; // 25 MHz clock: rising edge sensitive

endmodule

29

module memory (
input logic clk, reset,
input logic [16:0] address_read, address_write,
input logic [31:0] data_in,
input logic [1:0] bias,
output logic [7:0] data_out,
input logic read_ena, write_ena);

reg [31:0] mem [65535:0];
reg [31:0] A;

always_ff@(posedge clk) begin
if (write_ena) begin
mem[address_write] = data_in;
end
if (read_ena) begin
A = mem[address_read];
data_out <=
{A[(bias<<3)+7] ,A[(bias<<3)+6],A[(bias<<3)+5] ,A[(bias<<3)+4],A[(bias<<3)+3],A[(bias<<3)
end else
data_out <= 0;

end

endmodule

8.2.3 fftmain.sv

LITITLTTT717 7777777777777 7777777 77

//

// Filename: fftmain.v

/7 L

// Project: A General Purpose Pipelined FFT Implementation

/!

// Purpose: This is the main module in the General Purpose FPGA FFT
// implementation. As such, all other modules are subordinate

// to this one. This module accomplish a fixed size Complex FFT on

// 512 data points.

// The FFT is fully pipelined, and accepts as inputs one complex two’s
// complement sample per clock.

//

// Parameters:

// i_clk The clock. All operations are synchronous with this clock.

// i_reset Synchronous reset, active high. Setting this line will

// force the reset of all of the internals to this routine.
// Further, following a reset, the o_sync line will go

// high the same time the first output sample is valid.

// i_ce A clock enable line. If this line is set, this module
// will accept one complex input value, and produce

// one (possibly empty) complex output value.

30

//
//
/7
/7
//
/7
//
//
/7
//
//
/7
//
//
/7
//
//
/7
//
//
/7
//

i_sample The complex input sample. This value is split
into two two’s complement numbers, 16 bits each, with
the real portion in the high order bits, and the
imaginary portion taking the bottom 16 bits.
o_result The output result, of the same format as i_sample,
only having 21 bits for each of the real and imaginary
components, leading to 42 bits total.
o_sync A one bit output indicating the first sample of the FFT frame.
It also indicates the first valid sample out of the FFT
on the first frame.

Arguments: This file was computer generated using the following command
line:

% ./fftgen -v -d ../fft-sv -f 512 -1 -k 1 -p 100000 -n 16 -a ../bench/cpp/fftsize.h

This core will use hardware accelerated multiplies (DSPs)
for 7 of the 9 stages

Creator: Dan Gisselquist, Ph.D.
Gisselquist Technology, LLC

LI 777 777

/!
//
//
/7
//
//
//
//
//
/!
//
/!
/7
//
//
/7
//
/!
//
//
//
/7
//
/!
/7

33}

Copyright (C) 2015-2024, Gisselquist Technology, LLC

{{{

This file is part of the general purpose pipelined FFT project.

The pipelined FFT project is free software (firmware): you can redistribute
it and/or modify it under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

The pipelined FFT project is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTIBILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with this program. (It’s in the $(RO0T)/doc directory. Run make
with no target there if the PDF file isn’t present.) If not, see

<http://wuw.gnu.org/licenses/> for a copy.
3
License: LGPL, v3, as defined and found on www.gnu.org,
{{{
http://www.gnu.org/licenses/lgpl.html
3

L1177 77

/7
/7
//
/!

31

//

module fftmain #(

)

parameter IWIDTH=16,
parameter OWIDTH=21
// LGWIDTH=9;

/!

(i_clk, i_reset, i_ce,

i_sample, o_result, o_sync);
// The bit-width of the input, IWIDTH, output, OWIDTH, and the log
// of the FFT size. These are localparams, rather than parameters,
// because once the core has been generated, they can no longer be
// changed. (These values can be adjusted by running the core
// generator again.) The reason is simply that these values have
// been hardwired into the core at several places.

input wire i_clk, i_reset, i_ce;
//

input wire [(2*IWIDTH-1):0] i_sample;
output reg [(2*0OWIDTH-1):0] o_result;
output reg o_sync;

// Outputs of the FFT, ready for bit reversal.
wire br_sync;
wire [(2*0WIDTH-1):0] br_result;

// A hardware optimized FFT stage
wire w_sb12;
wire [33:0] w_d512;
fftstage #(
/7
.IWIDTH(IWIDTH),
.CWIDTH(IWIDTH+4),
.OWIDTH(17),
.LGSPAN(8),
.BFLYSHIFT(0),
.OPT_HWMPY (1),
.CKPCE(1),
.COEFFILE("cmem_512.hex")
// 3}
) stage_512(
//
.i_clk(i_clk),
.i_reset(i_reset),
.i_ce(i_ce),
.i_sync(!i_reset),
.i_data(i_sample),
.o_data(w_d512),
.o_sync(w_s512)
// 3}
)

32

// A hardware optimized FFT stage
wire w_s256;
wire [35:0] w_d256;
fftstage #(
// A
.IWIDTH(17),
.CWIDTH(21),
.OWIDTH(18),
.LGSPAN(7),
.BFLYSHIFT(0),
.OPT_HWMPY (1),
.CKPCE(1),
.COEFFILE("cmem_256.hex")
// }}}
) stage_256(
//
.i_clk(i_clk),
.i_reset(i_reset),
.i_ce(i_ce),
.i_sync(w_sb12),
.i_data(w_d512),
.o_data(w_d256),
.o_sync(w_s256)
// ¥}
)

// A hardware optimized FFT stage
wire w_s128;
wire [35:0] w_d128;
fftstage #(
//
.IWIDTH(18),
.CWIDTH(22),
.OWIDTH(18),
.LGSPAN(6),
.BFLYSHIFT(0),
.OPT_HWMPY (1),
.CKPCE(1),
.COEFFILE("cmem_128.hex")
// ¥}
) stage_128(
// A
.i_clk(i_clk),
.i_reset(i_reset),
.i_ce(i_ce),
.i_sync(w_s256),
.i_data(w_d256),
.o_data(w_d128),
.o_sync(w_s128)
// 3}
)

33

// A hardware optimized FFT stage
wire w_s64;
wire [37:0] w_dé64;
fftstage #(
//
.IWIDTH(18),
.CWIDTH(22),
.OWIDTH(19),
.LGSPAN(5) ,
.BFLYSHIFT(0),
.OPT_HWMPY (1),
.CKPCE(1),
.COEFFILE("cmem_64.hex")
// ¥}
) stage_64(
// {H
.i_clk(i_clk),
.i_reset(i_reset),
.i_ce(i_ce),
.i_sync(w_s128),
.i_data(w_d128),
.o_data(w_d64),
.o_sync (w_s64)
// }}}
)

// A hardware optimized FFT stage
wire w_s32;
wire [37:0] w_d432;
fftstage #(
// {H
.IWIDTH(19),
.CWIDTH(23),
.OWIDTH(19),
.LGSPAN(4),
.BFLYSHIFT(0),
.OPT_HWMPY (1),
.CKPCE(1),
.COEFFILE("cmem_32.hex")
// ¥}
) stage_32(
// A
.i_clk(i_clk),
.i_reset(i_reset),
.i_ce(i_ce),
.i_sync(w_s64),
.i_data(w_d64),
.o_data(w_d32),
.o_sync(w_s32)
// }}}
)

34

// A hardware optimized FFT stage
wire w_sl16;
wire [39:0] w_d416;
fftstage #(
// {H
.IWIDTH(19),
.CWIDTH(23),
.OWIDTH(20),
.LGSPAN(3),
.BFLYSHIFT(0),
.OPT_HWMPY (1),
.CKPCE(1),
.COEFFILE("cmem_16.hex")
// ¥}
) stage_16(
// A
.i_clk(i_clk),
.i_reset(i_reset),
.i_ce(i_ce),
.i_sync(w_s32),
.i_data(w_d32),
.o_data(w_d16),
.o_sync(w_s16)
// ¥}
);

// A hardware optimized FFT stage
wire w_s8;
wire [39:0] w_dS8;
fftstage #(
// A
.IWIDTH(20),
.CWIDTH(24),
.OWIDTH(20),
.LGSPAN(2),
.BFLYSHIFT(0),
.OPT_HWMPY (1),
.CKPCE(1),
.COEFFILE("cmem_8.hex")
// }}}
) stage_8(
/7 {H
.i_clk(i_clk),
.i_reset(i_reset),
.i_ce(i_ce),
.i_sync(w_s16),
.i_data(w_d416),
.o_data(w_d8),
.o_sync (w_s8)
// 3}
);

wire w_s4;

35

wire [41:0] w_d4;
qtrstage #(
//
.IWIDTH(20),
.OWIDTH(21),
.LGWIDTH(9),
.INVERSE(0),
.SHIFT(0)
// ¥}
) stage_4(
// {H
.i_clk(i_clk),
.i_reset(i_reset),
.i_ce(i_ce),
.i_sync(w_s8),
.i_data(w_d8),
.o_data(w_d4),
.o_sync(w_s4)
// }}}
)
// verilator lint_off UNUSED
wire w_s2;
// verilator lint_on UNUSED
wire [41:0] w_d42;
laststage #(
// {H
.IWIDTH(21),
.OWIDTH(21),
.SHIFT(0)
// ¥}
) stage_2(
// {H
.i_clk(i_clk),
.i_reset(i_reset),
.i_ce(i_ce),
.i_sync(w_s4),
.i_val(w_d4),
.o_val(w_d2),
.o_sync(w_s2)
// }}}
)

wire br_start;
reg r_br_started;
initial r_br_started = 1°b0;
always @(posedge i_clk)
if (i_reset)
r_br_started <= 1°b0;
else if (i_ce)
r_br_started <= r_br_started || w_s2;
assign br_start = r_br_started || w_s2;

// Now for the bit-reversal stage.
bitreverse #(
//
.LGSIZE(9), .WIDTH(21)
// ¥}
) revstage (
// A
.i_clk(i_clk),
.i_reset(i_reset),
.i_ce(i_ce & br_start),
.i_in(w_d42),
.o_out (br_result),
.o_sync (br_sync)
// ¥}
)

// Last clock: Register our outputs, we’re done.
initial o_sync = 1’b0;
always @(posedge i_clk)
if (i_reset)
o_sync <= 1’b0;
else if (i_ce)
o_sync <= br_sync;

always @(posedge i_clk)
if (i_ce)

o_result <= br_result;
else

o_result <= 0;

endmodule

37

