
BOMBERMAN
Natalie Hughes, Qian Zhao, Shiyan 

Wang

FINAL PROJECT:



PROJECT INTRODUCTION

● Iconic 2D multiplayer game by Hudson Soft.
● Two players battle in grid-based mazes.
● Place bombs to:

○ Destroy obstacles.

○ Outmaneuver opponents.

● Mazes have destructible and indestructible 
walls.

● Bombs explode to trap or eliminate 
opponents.

● Game ends when one player eliminates the 
other.



SYSTEM ARCHITECTURE

● USB controllers interface with 
game logic 

● vga.c driver relays control signals 
to FPGA, updating VGA monitor 
graphics; vga_display.sv handles 
sprite rendering.

● WM8731 CODEC manages audio 
output.

● FPGA registers track game state 
and ensure consistent rule 
application.



Qsys connection

● audio_0: ip core to feed data to 
the codec

● audio_and_video_config: ip core to 
configure the codec (data width, 
sample rate, etc)

● audio_pll: provides 12.288MHz 
driver clock for codec

● vga_ball: add two streaming 
sources output to provide data to 
audio_0



HARDWARE VIDEO

● Handles VGA display output and 
game graphics rendering using 
ROM modules for sprites and map 
elements, updating pixel positions

● submodule generates 
synchronization signals, managing 
timing for pixel updates.

● Player rendering uses central pixel 
location with four directional sprites 
and color maps, managing two 
display layers: players on top, map 
on bottom.



HARDWARE VIDEO - CLOSER LOOK



HARDWARE - AUDIO



SOFTWARE - USER INPUT

● Manages USB game controllers (idProduct 17) 
via libusb, handling input for movement and 
bomb placement.

● Debounce counters ensure single presses are 
registered; both controllers processed in a 
single loop using libusb_interrupt_transfer.

● Key functions detect and interact with 
controllers, reading 7-byte protocol messages 
to discern player actions in real-time.

● Place bombs with A and move with arrow 
keys



SOFTWARE - GAME LOGIC
● Main game loop processes:

● Player movement and bomb placement

● Power-up collection

● Game state updates

● Bomb detonation and explosion propagation

● Map changes synchronization with display hardware

● Loop continues until a player dies

● Displays game over screen and cleans up resources at the 

end



GAME LOGIC - OVERVIEW

Player Move

Collision 

Adjust position 
to help enter the 

path

Close to 
path

Successful 
position change

No change in 
position

yes

no

yes

no

Available 
place for 

bomb

Change map to 
display bomb

Start counting 
the time left 

Place bomb

Nothing changes
no

yes

The game ends when a player collides with the flame 
and is eliminated, and the other player wins. Players 

dying at the same time is a tie.



GAME LOGIC - BOMBS

Bombs 
in map

Count time

300 
ticks

Remove bomb 
from map

Start explosion
Write map

Choose next 
bomb

All bombs 
updated

Finish 

yes

yes

no

no

yes

no



GAME LOGIC - EXPLOSIONS
Explosions 

in map

Count stage

Stage > 
Range

Shrink fire on 
map

Choose next 
bomb

All bombs 
updated

Finish 

yes

yes

no

no

Expand fire on 
map

Fire shrunk 
to the point 

of 
disappearing

Remove 
explosion

yes

yes

no

no



Type 1: Increase the number of bombs the player can place

GAME LOGIC - PROPS

Type 2: Expand the blast range of bombs placed by player

Type 3: Increase player movement speed



GAME LOGIC - PROPS

Randomly generated 
when flames shrink to 
clear burning chests

Write the corresponding 
prop into the map

Collision 
with player Update Player Values

Remove props from map 
(i.e. rewrite as grass)

no

yes



HARDWARE-SOFTWARE INTERFACE



THANK 
YOU!


