
Section Title Section Title
Section Subtitle Section Subtitle

1 | Presentation Title Presentation Title

CSEE 4840 Final Project
2048

Kanghui Lin (kl3521) Yunhao Xing(yx2812) Jingtian Lin(jl6589)

2 | Introduction

Introduction

A classical 2048 video game based on Altera DE1
board.

Use PS5 controller to merge the tile.

3 | Introduction

Hardware

4 | Introduction

Introduction

What we have done:
Software:
•The game logic in software part is verified and tested.

Hardware：
•The game audio file is generated but not implemented to the board yet.

•The basic background and framework of the game can be displayed in VGA
monitor

•The controller signal is tested but not implemented to the board yet.

5 | Introduction

Software

Board & Frames
the board is a 4*4 matrix where each position
in the board represents the value held in the
corresponding board.
The Frames are generated during player
actions (shift_left, shift_right, shift_up, and
shift_down), and tile generations.
There are in total of 6 frames generated per
each player move.

6 | Introduction

Frame

frames are consists of 6 frame matrices;
frame1 entails what should the hardware render on first frame;
frame2 entails what should the hardware render on second frame
frame3 …
each frame matrix is 16*4 where 16 correspond to the 16 tiles on the
board
for each tile there are 4 arguments where:
arg0 specifies the x position that the tile should be placed on
arg1 specifies the y position that the tile should be placed on
arg2 (value from 1-4) specifies the size of the tile that should be
rendered where x \in (1-4) represents 0.25*x*100*100 (tile size)
arg3 specifies the value on the tile

7 | Introduction

Frames

We split the shift move into two parts. The first part is the slide which
move all tiles to the leftmost / rightmost / farthest to the top / farthest to
the bottom according to player move. The second part merges the tile
with the adjacent tile that has the same value.

The frame on the screen is generated accordingly.
frame 1-2 is the animation of the slide
frame 3-4 is the animation of the merge
frame 5-6 is the generation of new tile

8 | Introduction

Frame

For instance, suppose a row (0, 2, 2, 0) performs a left_move() by
player.
Frame 1-2 will generate the animation of sliding the two 2 tiles to the
leftmost position. At frame 2 the screen will display (2, 2, 0, 0).
Frame 3-4 will generate the animation of merging two 2 tiles. At frame 4
the screen will display (4, 0, 0, 0)
then suppose a tile 4 is generated at the rightmost position of the row
Frame 5-6 will generate the animation of zooming out a new tile in the
corresponding position. At frame 6 the screen will display (4, 0, 0, 4)

9 | Introduction

Hardware

Game:

•Main module of our game
•Supposed to handle audio and
video parts
•For video part, use sprite_rom to
get correct pixel info for our vga
display

10 | Introduction

Hardware

Game code:

11 | Introduction

Hardware

Sprite_ROM:
•A rom controller, integrate all roms so that the
whole structure is more clear and
comprehensive
•Fetch pixel info by different component types
•Include a state machine to render screen

12 | Introduction

Hardware

Sprite_Rom coe:

13 | Introduction

Hardware

ROM: •Init roms using .mif files
•.mif files are generated by Python program using
images
•Except for color module, each rom takes an
address and provides color type
•For color module, it takes the color type and rom
type as the address and provides the actual color
info (RGB value)

Thank You!

14 | End

