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Abstract: Lambert’s model for diffuse reflection is extensively used
in computational vision. For several real-world objects, the Lambertian
model can prove to be a very inaccurate approximation to the diffuse
component. While the brightness of a Lambertian surface is independent
of viewing direction, the brightness of a rough diffuse surface increases
as the viewer approaches the source direction. A comprehensive model is
developed that predicts reflectance from rough diffuse surfaces. Experi-
ments have been conducted on real samples, such as, plaster, clay, and
sand. The reflectance measurements obtained are in strong agreement
with the reflectance predicted by the proposed model.

1 Introduction

A surface that obeys Lambert’s Law appears equally bright from all viewing
directions [Lambert-1760]. This model for diffuse reflection was advanced by
Lambert over 200 years ago and remains one of the most widely used models in
machine vision. It is used explicitly by shape recovery techniques such as shape
from shading and photometric stereo. It is also invoked by vision techniques such
as binocular stereo and motion detection to solve the correspondence problem.
For several real-world objects, however, the Lambertian model can prove to be
a poor and inadequate approximation to the diffuse component. It is shown in
this paper, that surface roughness plays a critical role in the deviation from
Lambertian behavior. This deviation is significant for very rough surfaces, and
increases with the angle of incidence.

The topic of rough diffuse surfaces has been extensively studied in the areas of
applied physics and geophysics. The followingis a very brief summary of previous
results on the subject. In 1924, Opik [Opik-1924] designed an empirical model to
describe the non-Lambertian behavior of the moon. In 1941, Minnaert [Minnaert-
1941] modified Opik’s model to obtain the following reflectance function:

fr = k;—rl(cos f; cos 97«)(]“_1) (0<k<1)
where, §; and 6, are the polar angles of incidence and reflection, and % is a
measure of surface roughness. This function was designed to obey Helmholtz’s
reciprocity principle but is not based on any theoretical foundation. It assumes
that the radiance of non-Lambertian diffuse surfaces is symmetrical with respect
to the surface normal, an assumption that proves to be incorrect.

The above studies were attempts to design reflectance models based on mea-
sured reflectance data. In contrast, several investigators developed theoretical
models for diffuse reflection from rough surfaces (see [Oren and Nayar-1992] for a
more detailed survey). These efforts were motivated primarily by the reflectance
characteristics of the moon. Infrared emission and visible light reflection from




the moon indicate that the moon’s surface radiates more energy back in the
direction of the source (the sun) than in the normal direction (like Lambertian
surfaces) or in the forward direction (like specular surfaces). This phenomenon is
referred to as backscattering '. Though several models were developed to describe
this phenomenon [Smith-1967] [Buhl et al-1968] [Hering and Smith-1970], these
models are limited either because they assume restrictive surface geometries, or
because they are confined to reflections in the plane of incidence.

In contrast, the model presented here can be applied to 1sotropic as well as
anisotropic rough surfaces, and can handle arbitrary source and viewer direc-
tions. Further, it takes into account complex geometrical effects such as mask-
wng, shadowing, and interreflections between points on the surface. We begin by
modeling the surface as a collection of long symmetric V-cavities with Lamber-
tian facets. First, a reflectance model 1s developed for anisotropic surfaces with
one type (facet-slope) of V-cavities, and with all cavities aligned in the same
direction on the surface plane. This result is then used to derive a model for
the more general case of isotropic surfaces that have normal facet distributions
with zero mean and arbitrary standard deviation (¢). The standard deviation
parametrizes the macroscopic roughness of the surface. The Lambertian model
is a special case, or instance, of the derived model.

Figure 1 shows three images of spheres rendered using the proposed re-
flectance model. In all three cases, the sphere is illuminated from the viewer
direction. In the first case, ¢ = 0, and hence the sphere is Lambertian in re-
flectance. As the roughness increases, the sphere begins to appear flatter. In the
extreme roughness case shown in Figure 1(c), the sphere appears like a flat disc
with nearly constant brightness. This phenomenon has been widely observed and
reported in the case of the full moon.

(a)Lambertian (b)e = 20° (c)o = 40°

Fig. 1. Images of spheres rendered using the proposed reflectance model.

1 A different backscattering mechanism produces a sharp peak close to the source
direction (see [Hapke and van Horn-1963, Oetking-1966, Tagare and deFigueiredo-
1991]). This is not the mechanism discussed in this paper. Hapke et al. [Hapke et
al.-1993] attribute this backscatter peak to a physical-optics phenomenon called the
“opposition effect.” This phenomenon is seldom encountered in machine vision since
it 1s observed only when the sensor and source are within a few degrees from each
other; a situation difficult to emulate in practice without the source or the sensor
occluding the other.



Several experimental results are presented to demonstrate the accuracy of
the diffuse reflectance model. These experiments were conducted on common-
place samples such as sand and plaster. In all cases, reflectance predicted by the
model was found to be in strong agreement with measurements. These results
illustrate that the deviation from Lambertian behavior can be substantial. We
conclude with a discussion on the implications of the proposed model for ma-
chine vision. Specifically, the effect of the described reflectance characteristics on
image brightness, reflectance maps, and shape recovery algorithms is examined.
These results demonstrate that the findings reported here are fundamental to
the problem of visual perception.

2 Surface Roughness Model

The effects of shadowing, masking, and interreflection need to be analyzed in
order to obtain an accurate reflectance model. To accomplish this, we use the
roughness model proposed by Torrance and Sparrow [Torrance and Sparrow-
1967] that assumes the surface to be composed of long symmetric V-cavities
(see Figure 2). Each cavity consists of two planar facets. The width of each
facet is assumed to be small compared to its length. We assume each facet area
da i1s small compared to the area dA of the surface patch that is 1imaged by
a single sensor pixel. Hence, each pixel includes a very large number of facets.
Further, the facet area is large compared to the wavelength A of incident light
and therefore geometrical optics can be used to derive the reflectance model.
The above assumptions can be summarized as: A? < da <€ dA

We denote the slope and orientation of each facet in the V-cavity model as
(04, ¢q), where 8, is the polar angle and ¢, is the azimuth angle. Torrance and
Sparrow have assumed all facets to have equal area da. They use the distribution
N(04, ¢q) to represent the number of facets per unit surface area that have the
normal @ = (04, ¢4). Here, we use a probability distribution to represent the
fraction of the surface area that is occupied by facets with a given normal.
This is referred to as the slope-area distribution P(84, ¢4). The facet-number
distribution and the slope-area distribution are related as follows:

_ dA N(04,¢a) da cosl,

P(lq, ¢q) = A = N(f4, ¢q) da cos b, (1)

The slope-area distribution is easier to use than the facet-number distribution
in the following model derivation. For isotropic surfaces, N(f,,¢4) = N(04)
and P(6,,¢,) = P(0,), since the distributions are rotationally symmetric with
respect to the global surface normal 7 (Figure 2).

3 Reflectance Model

In this section, we derive a reflectance model for rough diffuse surfaces. For lack

of space, only important results are discussed. For details we refer the reader
to [Oren and Nayar-1992]. During the derivation, we will draw on several well-
known radiometric definitions that are given in [Nicodemus et al-1977].
Consider a surface area dA that is imaged by a single sensor element in the
direction ¢ = (6, ¢,) and illuminated by a distant point light source in the
direction § = (0;, ¢;). The area dA is composed of a very large number of
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Fig.2. Surface modeled as a collection of V-cavities.

symmetric V-cavities. Each V-cavity is composed of two facets with the same
slope but facing in opposite directions. Consider the flux reflected by a facet with
area da and normal @ = (64, ¢4). The projected area on the surface occupied by
the facet is da cosf, (see Figure 2). Thus, while computing the contribution of
the facet to the radiance of the surface patch, we need to use the projected area
da cosf, and not the actual facet area da. This radiance contribution i1s what
we call the projected radiance of the facet:

i d@r(gaa ¢(1)
Lyp(0a, ¢a) = (dacosty) cosb, dw, )

where, dw, is the solid angle subtended by the sensor optics. For ease of descrip-
tion, we have dropped the source and viewing directions from the notations for
projected radiance and flux. Now consider the slope-area distribution of facets
given by P(f4, ¢4). The total radiance of the surface can be obtained as the
aggregate of L,,(6,, ¢4) over all facets on the surface:

% 27
Lr(gTa¢7‘;9ia¢i) = /9 _0/ P(gaa¢a) Lrp(gaa¢a) sinfy dog df, (3)

=0
3.1 Model for Uni-directional Single-Slope Distribution

The first surface type we consider has all facets with the same slope #,. Further,
all V-cavities are aligned in the same direction; azimuth angles of all facets are
either ¢, or ¢, + . Consider a Lambertian facet with albedo p, that is fully
illuminated (no shadowing) and is completely visible (no masking) from the
sensor direction. The radiance of the facet is proportional to its irradiance and
is equal to £E(f,,¢4). The irradiance of the facet is E(6,,¢,) = Eo<s,a>,
where, Ey is the irradiance when the facet is illuminated head-on (i.e. § = ),
and <, > denotes the dot product between two vectors. Using the definition of
radiance [Nicodemus et al-1977], the flux reflected by the facet in the sensor
direction is: d®, = £Ey<5,a><v,a>. Substituting this expression in (2), we
get:
P <s,a><v,a>
Lrp(0a; 6a) = e T ST “)
The above expression clearly illustrates that the projected radiance of a tilted
Lambertian facet is not equal in all viewing directions.



Geometric Attenuation Factor: If the surface is illuminated and viewed from
the normal direction (8 = @ = n), all facets are fully illuminated and visible.
For larger angles of incidence and reflection, however, facets are shadowed and
masked by adjacent facets (see Figure 3). Both these geometrical phenomena
reduce the projected radiance of the facet. This reduction in brightness can be
derived using geometry and incorporated into a single term, called the geomet-
rical attenuation factor (GAF), that lies between zero and unity. Several deriva-
tions of the GAF have been presented [Torrance and Sparrow-1967] [Blinn-1977]
[Oren and Nayar-1992]. The final result can be compactly represented as:
2< s, n><a,n> 2<v,n><a,n> 5
<s,a> ’ <v,a> ] ] 5)

GAF = Min [1, Mazx [0,

A
z

2
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(a) Shadowing (b) Masking (c) Interreflection

Fig. 3. Shadowing, masking, and interreflection in a V-cavity

Projected Radiance and GAF: The projected radiance of a Lambertian facet
is obtained by multiplying the GAF with the projected radiance given by (4).
Table 1 details the GAF and the corresponding projected radiance for all cases
of shadowing and masking. Note that the projected radiance is denoted as L%p;
the superscript is used to indicate that the radiance is due to direct illumination
by the source. In the following discussion, we will use pr to denote radiance

due to interreflections.

Table 1. Projected radiance of a facet for different masking/shadowing conditions.

H GAF |1, (0, 62) [
; oL <s.a><b.a>
No Masking TS T
or 1 LEqcos b cosb, (1 + tan 6; tan 6, cos (¢; — (ba))
Shadowing (1 + tan 6, tan 0, cos (¢, — (ba))
Masking 2S00 bl2 L p9cs 0> =
LEqcosb; cosfy 2 (1 + tan 6; tan 0, cos (¢; — (ba))
. 25, N><aA, N> p o 2<5, N ><V, 0>
Shadowing <ias £Eo PRI =
LEqcosl; cosly 2 (1 + tan 6, tan 0, cos (¢, — (ba))




Interreflection Factor: We have the task of modeling interreflections in the
presence of masking and shadowing effects. In the case of Lambertian surfaces,
the energy in an incident light ray diminishes rapidly with each interreflection
bounce. Therefore, we model only two-bounce interreflections and ignore subse-
quent bounces. Since the length [ of the V-cavity is much larger than its width
w, 1.e. I > w, it can be viewed as a one-dimensional shape with translational
symmetry. For such shapes, the two-bounce interreflection component can be
determined as an integral over the one-dimensional cross-section of the shape

[Siegel and Howell-1972]:
o) =2 [ Ktk (6)

where z and y are the shortest distances of facet points from the intersection of
the two facets (see Figure 3(c)). K’ is the kernel for the translational symmetry
case and is derived in [Jakob-1957] and [Forsyth and Zisserman-1989] to be:
" msin? (20,) zy

K (l‘, y) — 9 (l‘z ¥+ Qxy cos (29(1) + y2)3/2 (7)
We know that the orientation of the considered facet is @ = (6,4, ¢4) and the
orientation of the adjacent facet is @' = (04, ¢4 + 7). The limits of the integral
in the interreflection equation are determined by the masking and shadowing
of these two facets. Let m, be the width of the facet which 1s visible to the
viewer, and m® be the width of the adjacent facet that is illuminated. From the
definitions of radiance and projected radiance we get:

l<a, o> ©
L2 = ’ L2(2)d
P da<d,ﬁ><@,ﬁ>/x:mv (@) d (8)

Using the following change of variables: r = £ ; ¢ = £ the radiance due to
two-bounce interreflections given by (6) and (8) can be ertten as:
12, = (Ly g, 245> “>/ / K'(t,r)drdt (9)
T <a,n><v,n> =m me
Using (7), the above integral is evaluated as:
K'(ryt)drdt = = |d(1, 7% 4+ d(1, ™0y — a0~ a1, 1) (10
/. / (rerde = a0, ) 4 (1,25 = a2, 220) — afr, |10

Where. d(x, y) = /2?2 + 2wy cos (20,) + y*. We refer to (10) as the interreflection
factor (IF). From (9), the interreflection component of the projected radiance
of a facet with orientation (6, ¢4) is

pr(ﬁa,qba) = (g)on cos 8; cos 8, (11)
(1 — tan d; tan B, cos (¢; — (ba)) (1 + tan 6, tan d, cos (¢, — an))I]:(@, §,a)

The total projected radiance of the facet is the sum of the projected radiance due
to source illumination (given in Table 1) and the above interreflection compo-
nent: L,,(0q, ¢a) = L%p(ﬁa, $a) + pr(ﬁa, $q) The uni-directional single-slope
surface considered here has only two types of facets with normals (64, ¢,) and
(04, ¢ + 7). Hence, the radiance of the surface for any given source and sensor
directions is simply the average of the projected radiances of the two facet types.



3.2 Model for Isotropic Single-Slope Distribution

All facets on this isotropic surface have the same slope 8, but are uniformly
distributed in ¢,. From the previous section, we know the radiance L,, (64, ¢4)

of a facet with normal a = (f,,¢,). Therefore, the radiance of the isotropic
surface is determined as an integral of the projected radiance over ¢,:
1 27
Lrp(ga) = 2—/ Lrp(gaa ¢)a)d¢)a (12)
T Jga=0

Given a source direction (6;, ¢;) and a sensor direction (6., ¢, ), we first need to
find the ranges of facet orientation ¢, for which the facets are masked, shad-
owed, masked and shadowed, and neither masked nor shadowed?. This requires
a careful geometrical analysis. Once this is done the above integral can be de-
composed into parts corresponding to masking/shadowing ranges. Each range is
evaluated using the corresponding radiance expression in Table 1. We refer the
interested reader to [Oren and Nayar-1992] for details on the evaluation of direct
illumination and interreflection components of (12).

3.3 Model for Gaussian Slope-Area Distribution
In the case of isotropic surfaces, the slope-area distribution can be described
using a single parameter, namely, 8,, since the facets are uniformly distributed
in ¢4. The radiance of any isotropic surface can therefore be determined as:

ks

L0y, 05, 6r — 1) = /02 P(00)Lrp(0a) sin 0ado, (13)

where L,,(f,) is the projected radiance obtained in the previous section. Here,
we assume the isotropic distribution to be Gaussian with mean g and standard
deviation o, i.e. P(84; o, ). Reasonably rough surfaces can be described using a
zero mean (p = 0) Gaussian distribution: P(0,) = c exp (—02/202) where, the
¢ is the normalization constant.

The above integral cannot be easily evaluated. Therefore, we pursued a func-
tional approximation [Oren and Nayar-1992] to the integral that is accurate for
arbitrary surface roughness and angles of incidence and reflection. The final ap-
proximation results are given below. Let o = Max[0,,6;] and 8 = Min[0,,0;].
The source illumination component of radiance of a surface with roughness o is:
Ly(60r,8i,6r — dis0) = £Eq cos b;

Ci(o) + 14)

(
cos (¢r — ¢:)Ca(a; B ¢r — di;0) tan B + (1 — | cos (¢ — ¢i)|)03(a;6;0) tan (0—21—6)

where the coefficients are:

2

ci=1-05—2
0?2 +0.33
0.45% sin o if cos (¢pr — ¢i) >0
Cy =

0.4502_1’% (sin o — (%)3) otherwise

2 2
0125 — 7 |8
0?2 4+ 0.09 w2

2 Imagine a V-cavity rotated about the global surface normal for any given source and

Cs

sensor direction. Various masking/shadowing scenarios can be visualized.



Using a similar approach, an approximation to the interreflection component

was also derived:
2 2

2
20 0 6 — o) = 0177~ LA P (2
Lr(gragza¢r Qj)zao')—o'l?ﬂ_EOCOSHZ o2+ 0.13 [1 COS(¢7‘ ¢z)< ) (15)

The two components are combined to obtain the total surface radiance: L, (6, , 6;,
¢y — ¢is0) = LE(0r,0;, 6r — di50)+ L2(0,,0;, ¢ — ¢;; 0). Finally, the BRDF of
the surface is obtained from its radiance and irradiance as f.(0,,0;, ¢, —¢i;0) =
Ly (6,05, ¢p — ¢550) ] Egcosf;. Tt is important to note that the above model
obeys Helmholtz’s reciprocity principle. Also note that the model reduces to the
Lambertian model when o = 0.

T

Qualitative Model: A further simplification to the above model can be achieved
with a slight sacrifice in accuracy. The following model was arrived at by study-
ing, through numerous simulations, the relative contributions of various terms in
the functional approximation given by (14). The simulations showed that coef-
ficient C's makes a relatively small contribution to the total radiance. A simpler
model is thus obtained by discarding C's and ignoring interreflections:

Ly(0r,0;,¢0r — ¢5;0) = gEo cos 0;(Cy + CaMax [0, cos (¢ — QSZ)] tan 3) (16)

This model can be of significant practical value in applications where very high
accuracy 1s not critical.

4 Experiments

We have conducted several experiments to verify the accuracy of the diffuse
reflectance model. The experimental set-up used to measure the radiance of
samples is described in [Oren and Nayar-1992]. Figures 4 and 5 shows results
obtained for samples of wall plaster (A) and sand (B). The radiance of each sam-
ple is plotted as a function of sensor direction 8, for different angles of incidence
0;. These measurements are made in the plane of incidence (¢, = ¢; = 0). For
these two samples (A and B), ¢ and p were selected empirically to obtain the
best match between measured and predicted reflectance. Here, we have used the
numerical evaluation of the model (equation 13). For both samples, radiance in-
creases as the viewing direction 6, approaches the source direction 6; (backward
reflection). This is in contrast to the behavior of rough specular surfaces that re-
flect more in the forward direction, or Lambertian surfaces where radiance does
not vary with viewing direction. For both samples, the model predictions and
experimental measurements match remarkably well. In both cases, a small peak
1s noticed near the source direction. This phenomenon, known as the opposition
effect [Hapke and van Horn-1963], was discussed earlier in the introduction and
is different from the one described by our model.

Figure 6 shows results for a sample (foam) that has not only a diffuse com-
ponent but also a significant specular component. In this case, the reflectance
model used is a linear combination of new model and the Torrance-Sparrow
model [Torrance and Sparrow-1967] that describes specular, or surface, reflec-
tion from rough surfaces: L, = ky Lf + ks L7 where Lf and L} are the diffuse
and specular components, respectively, and k4 and k; are weighting coefficients



Wall Plaster

Fig.4. Reflectance measurement (dots) and reflectance model (solid lines) (o = 30°,
p = 0.90) plots for wall plaster (sample A). Radiance is plotted as a function of sensor
direction (§,) for different angles of incidence (8; = 30°,45°,60°).

Sand

Fig.5. Reflectance measurement and reflectance model (o = 35°, p = 0.80) plots for
sand (sample B).

Foam

Fig.6. Reflectance measurement and reflectance model (o = 20°, p = 0.8,
k</ka = 0.02) plots for foam (sample C). The reflectance model used includes a specular
component.



for the two components. For this experiment, we used the functional approxi-
mation (14) and the reflectance parameters o, p, kq, and k; were estimated by
fitting (using non-linear optimization) the model (14) to measured data. Other
experiments based on the combined model are reported in [Oren and Nayar-

1992].

5 Implications for Machine Vision

Numerous algorithms in computer vision use assumptions regarding reflectance
properties of objects in the scene. Incorrect modeling of reflectance properties
naturally leads to inaccurate results. We begin by examining images of rough
diffuse surfaces. Figure 7(a) shows an image of the rough cylindrical clay vase
taken using a CCD camera. The vase is illuminated by a single light source close
to the sensor direction. Clearly, the real vase appears much flatter, with less
brightness variation along its cross-section, than the Lambertian vase. Note that
the proposed model does well in predicting the appearance of the vase. Here,
roughness and albedo were selected empirically; ¢ = 40° and p = 0.70. Figure
7(d) compares brightness values along the cross-section of the three different vase
images. Note that the brightness of the real vase remains nearly constant over
most of the cross-section and drops quickly to zero very close to the limbs. The
proposed model does very well in predicting this behavior, while the Lambertian
model produces large brightness errors.

Brightness

| ettt

~—

(a) Image (b) Lambertian (c) Model (d)

Fig. 7. (a-c) Real image of a cylindrical clay vase compared with images rendered using
the Lambertian and proposed models. llumination is from the direction §; = 0°. (d)
Comparison between image brightness along the cross-sections of the three vases.

Reflectance maps are widely used in vision for obtaining shape information
from brightness images [Horn and Brooks-1989]. For a given reflectance model
and source direction, the reflectance map establishes the relationship between
surface orientation, given by the gradient space parameters (p,¢), and image
brightness. Figure 8(a) shows the reflectance map of a Lambertian surface for
illumination from the direction (6; = 10°, ¢; = 45°). The same reflectance map
is obtained using the proposed model with roughness ¢ = 0. Figure 8(b) shows
the reflectance map of a rough Lambertian surface with ¢ = 60°. Note that the
rough Lambertian surface produces a map that appears very similar to the lin-
ear reflectance map [Horn and Brooks-1989] hypothesized for the lunar surface.



(a) Lambertian (b) Rough Lambertian

Fig.8. Reflectance maps for (a) Lambertian surface (p = 0.9), and (b) rough Lamber-
tian surface (o = 60°, p = 0.9). For both maps the angles of incidence are §; = 10°
and ¢; = 45°. Note the similarity between the second map and the well-known linear
reflectance map previously suggested for lunar reflectance.

The proposed reflectance model therefore establishes a continuum from pure
Lambertian to lunar-like reflectance.

The problem of recovering shape from brightness images has been intensely
researched in the past two decades. Several algorithms have been proposed, the
most noteworthy of these being shape from shading [Horn and Brooks-1989] and
photometric stereo [Woodham-1980]. For these methods to produce meaningful
shape estimates, it 1s imperative that accurate reflectance models be used. Here,
we present results obtained by applying photometric stereo to the clay vase
shown in Figure 7. Figure 9(a) shows the shape of the vase recovered using
the Lambertian model, and Figure 9(b) shows the shape computed using the
proposed model with the same roughness and albedo used to render the image
in Figure 7(c). Figure 9(c) compares height values computed along the vase cross-
section using the two models. It is evident from this plot that the Lambertian
model results in large errors in computed orientation and hence also in computed
height. Similar errors are expected in the case of shape from shading.

Lambertian Height Actual shape

\"
£ 0’0‘0‘0%‘ “\“‘\\\
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(a) Lambertian (b) Model (c) Cross section

Fig.9. Shape of the vase in Figure 7(a) determined by photometric stereo using (a) the
Lambertian model, and (b) the proposed model. In both cases, images were obtained
using two light sources at angles —10° and 10° with respect to the sensor direction.
(c) Actual profile of the vase compared with profiles computed using the Lambertian
model and the proposed model (6 = 40°, p = 0.70). The Lambertian model produces
large errors in computed shape.
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