Sampling form distributions

Let f: Q — R™ be a probability density function on a domain Q C R and F be
the corresponding cumulative distribution function

P(z) = / (@) da.
Sampling from f means producing a random variable X such that
Pr(X <z) = F(z). (1)

In general, this might not be easy to do. However, for specific distributions
efficient algorithms might exist. In particular, practically every programming
language has facilities for sampling from Uniform [0, 1], which has pdf

1 if 0<y<1

0 otherwise

funiform(y) = {

and cdf
0 y<O
Funiform(x) = Yy 0 > y < 1
1 y>1.

Assuming that Y is sampled from Uniform [0, 1] then, Pr (Y < y) = y and for
any strictly monotonic increasing function g : [0,1] — R

Pr(g(Y) <g(y)) = v

Now note that ¢g(Y) is itself a random variable that we can call Z. Letting

z=yg(y)
Pr(Z<z)= gil(z) (2)

where g1 is the inverse of g in the sense that g~ *(g(y)) = y. Equation (2) shows

that the cdf of Z is just ¢g—'. Coming back to our original problem and letting
g = F~! we see that X = Z will be exactly the random variable satisfying (1)
that we were looking for.

In the specific case of the normal distribution,

F(z) = % + %erf(m/\/i)

where the error function erf(u) is defined

erf(u) = %/0 e dt,

so 2F(z) + 1 = erf (v/v2) and erf '(2y + 1) = F~'(y)/v2. Hence if ¥ ~
Uniform [0, 1] then v/2erf!(2Y + 1) ~ Normal(0, 1).



Note that the the error function (or its inverse) cannot be expressed in closed
form, so this is actually probably not the best way to sample from a Gaussian
in practice. Instead we can just take N independent symmetric binary random
variables 7 € {—1,1}. As N becomes large, by the law of large numbers the
distribution of

1 N

will quickly tend to Normal(0, 1).



