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Given data points (x1, y1) , (x2, y2) , . . . , (xN , yN ) where x∈X and y∈R, the
task of regression is to fit a real valued function f : X 7→ R to these points.
In the simplest case X = R. In multidimensional regression X = RD. It is
sometimes necessary to do regression on more complicated spaces, but we are
not going to deal with that here.

The easiest way to attack the regression problem is to look for f in a finite
dimensional space of functions spanned by a given basis. In other words, we
specify a set of functions φ0, φ1, . . . , φP from X to R and look for f in the form
of a linear combination

f(x) =

P
∑

i=0

θiφi(x). (1)

Performing the regression then reduces to finding the real parameters θ1, θ2, . . . , θP .

Different Bases

Linear regression

The simplest case is that of linear regression. In the one dimensional case we
would simply take φ0(x) = 1 and φ1(x) = x. This gives

f(x) =
1
∑

i=0

θiφi(x) = θ0 + θ1x,

so by tuning θ0 and θ1 we can make f be any linear function. In the multidimen-
sional case we would take φ1(x) = [x]1, φ2(x) = [x]2, all the way to φD(x) = [x]D.
Here [x]i denotes the i’th component of the vector x. Unfortunately, we cannot
use the simpler notation xi for this purpose, because that is already reserved
for the i’th data point. All linear functions f : RD 7→ R can be expressed in
this basis:

f(x) =
D
∑

i=0

θiφi(x) = θ0 + θ1 [x]1 + θ2 [x]2 + . . .+ θD [x]D .

Realizing the constant term by setting φ0(x) = 1 will be common to all the
function classes we discuss.
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Polynomial regression

Another possible choice of basis (in the one-dimensional case) is to set φi(x) = xi

for i=1, 2, . . . , P . This lets us choose f from the class of polynomial functions
of degree at most P :

f(x) =

P
∑

i=0

θiφi(x) = θ0 + θ1x+ θ2x
2 + . . .+ θPx

P .

The multidimensional case is more complicated, because i has to become a
multi-index i = (i1, i2, . . . , iD) and the sum over i’s becomes a sum over all
multi-indices with i1 + i2 + . . .+ id ≤ P . For example, for D=3 and P =2,

f(x) =
∑

(i1,i2,i3)

θiφi(x) =

θ0 + θ(1,0,0) [x]1 + θ(0,1,0) [x]2 + θ(0,0,1) [x]3 + θ(1,1,0) [x]1 [x]2 +

θ(0,1,1) [x]2 [x]3 + θ(1,0,1) [x]3 [x]1 + θ(2,0,0) [x]
2
1 + θ(0,2,0) [x]

2
2 + θ(0,0,2) [x]

2
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Gaussian RBF’s

The last basis we look at is that of Gaussian Radial Basis Functions (RBF’s)

φz = e−‖ x−z ‖2/(2σ2)

where σ is a pre-set variance parameter. Of course, this would give an un-
countably infinite number of basis functions (z can be anywhere in RD), which
we cannot have. We remedy the situation by only considering Gaussian RBF’s
centered at the data points themselves,

φi = e−‖ x−xi ‖
2/(2σ2).

This step is not as arbitrary as it sounds, but we cannot descibe the justifiction
for it here. As before, φ0 is still the constant function φ0(x) = 1.
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Solving for the θ’s

To find the optimal value for θ0, θ1, . . . , θP we

1. define a loss function L;

2. using the loss function define the empirical risk Remp(θ) quantifying the
loss over all the training data for particular values of θ0, θ1, . . . , θP ;

3. solve for the particular setting of the parameters (denoted θ∗0 , θ
∗
1 , . . . , θ

∗
P )

that minimizes the empirical risk.

We shall use the squared error loss function

L(y, f(x)) =
1

2
(y − f(x))

2
.

This is the simplest possible loss function, and it just says that the loss is
proportional to the square of the difference between the predicted value and the
true value. The empirical risk is then

Remp(f) = Remp(θ0, θ1, . . . , θP ) =

1

2N

N
∑

i=1

L(yi, f(xi)) =
1

2N

N
∑

i=1

(

yi −

P
∑

j=0

θj φj(xi)

)2

.

To simplify the development, we now introduce the vectors

θ =











θ0
θ1
...
θP











y =











y0

y1

...
yN











and the matrix

Q =











φ0(x1) φ1(x1) . . . φP (x1)
φ0(x2) φ1(x2) φP (x2)

...
. . .

...
φ0(xN ) φ1(xN ) . . . φP (xN )











. (2)

On the slides X is used for Q, but in the general case where φi are not linear
functions that might be misleading. The empirical risk can then be written in
the much shorter form

Remp =
1

2N
‖y −Qθ ‖

2
.

To find θ∗, we can just set the derivatives of the empirical risk with respect
to each θi equal to zero

∂Remp

∂θi
=

∂

∂θi

[

1

2N
‖y −Qθ ‖

2

]

= 0
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and solve for θ. In short hand, this is written as the single equation

∇θRemp = 0.

We can then solve for the optimal θ by

0 = ∇θRemp

= ∇θ

[

1

2N
‖y −Qθ ‖

2

]

=
1

2N
∇θ

[

(y −Qθ)
T
(y −Qθ)

]

=
1

2N
∇θ

[

yTy − 2yTQθ + θTQTQθ
]

=
1

2N

(

−2QTy + 2QTQθ
)

leading to
QTQθ = QTy

and
θ =

(

QTQ
)−1

QTy. (3)

This optimal value of θ we denote θ∗.
In summary, we can use the same formula (3) no matter whether we do linear,

polynomial or RBF regression, the only thing that changes is the definition of
the matrix Q (2).

In fact, a notable simplification occurs in the RBF case, if we omit the bias
term (leave φ0(x) = 1 out of the basis). In this case Q is a symmetric square
basis, so (3) reduces to just θ∗ = Q−1y.

To plot the resulting regression function we substite θ∗1 , θ
∗
1 , . . . , θ

∗
P back into

(1). For example, in the RBF case

f(x) = θ∗0 +

P
∑

i=1

θ∗i e
−‖ x−xi ‖

2/(2σ2).
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