
The Perceptron

The perceptron implements a binary classifier f : RD 7→ {+1,−1} with a linear
decision surface through the origin:

f(x) = step(θ>x). (1)

where

step(z) =

{

1 if z ≥ 0

−1 otherwise.

Using the zero-one loss

L(y, f(x)) =

{

0 if y = f(x)

1 otherwise,

the empirical risk of the perceptron on training data S = {(x1, y1) , (x2, y2) , . . . , (xN , yN)}
is just the number of misclassified examples:

Remp(θ) =
∑

i∈(1,2,...,N) : yi 6=step
(

θTxi

)

1.

The problem with this is that Remp(θ) is not differentiable in θ, so we cannot
do gradient descent to learn θ.

To circumvent this, we use the modified empirical loss

Remp(θ) =
∑

i∈(1,2,...,N) : yi 6=step
(

θTxi

)

−yi

(

θTxi

)

. (2)

This just says that correctly classified examples don’t incur any loss at all, while
incorrectly classified examples contribute

∣

∣θTxi

∣

∣, which is some sort of measure
of confidence in the (incorrect) labeling. 1

We can now use gradient descent to learn θ. Starting from an arbitrary θ(0),
we update our parameter vector according to

θ(t+1) = θ(t) − η∇θR|θ(t) ,

where η, called the learning rate, is a parameter of our choosing. The gradient
of (2) is again a sum over the misclassified examples:

∇θRemp(θ) =
∑

i∈(1,2,...,N) : yi 6=step
(

θTxi

)

−yixi.

1A slightly more principled way to look at this is to derive this modified risk from the hinge
loss L(y, θTx) = max

(

0,−y
(

θ
T
x
))

.

1

If we let M ⊂ S be the set of training examples misclassified by θ(t), the update
rule can be written very simply as

θ(t+1) = θ(t) + η
∑

(xi,yi)∈M

yixi.

One issue that remains is how to implement a bias term generalizing to linear
classifiers that do not necessarily cross the origin:

f(x) = step(θ0 + θ>x). (3)

The simplest solution to this is to append a constant (0’th) element 1 to each
input vector and incorporate θ0 in θ. This reduces (3) to the original (1) except
that the dimensionality of all the vectors has increased by one.

On-line perceptron (not examinable)

What we described above is the batch perceptron. The perceptron has a more
prominent role in the world of online learning [1]. In online learning there is no
distinction between the training set and testing set. The input is a continuous
stream of examples, and the algorithm has to make a prediction immediately
after xi arrives. Before the next example arrives, the true label yi is presented,
and the algorithm can update its internal parameters to reflect what it has
learnt from its success or failiure in predicting yi.

The online perceptron is about as simple as a learning algorithm gets:

w=0

for i=1 to m

predict y=step(w*x_i)

if (y=-1 and y_i=1) w=w+x_i

if (y=1 and y_i=-1) w=w-x_i

end

(note that w and x_i are vectors and * is the dot product). Remarkably, it is
still a powerful learning algorithm. It is possible to prove that, provided the
data lies withing a ball of radius R centered on the origin and is separable with
margin γ (i.e. there exists a separating hyperplane with normal vector w such
that |w · xi | / ‖w ‖ ≥ γ for all examples), the online perceptron will make no
more than dM/γ2e errors, regardless of the number of examples.

References

[1] F. Rosenblatt. The perceptron: A probabilistic model for information stor-
age and organization in the brain. Psychological Review, 65(6):386–408,
1958.

2

