3137 Data Structures and Algorithms in C++

Lecture 6
July 24 2006
Shlomo Hershkop

Announcements

- online syllabus updated with detailed readings
- Will do review on Wednesday
- what ever covered until today will be on midterm
- will release midterm this Wednesday (will talk about this)
Outline

- wrap up hashing
- Search engines
 - DS point of view
- Compression
- Search Algorithms

- Chapter 7-7.7

Hashing

- review

- what is a hash data structure
 - operations?
 - run times?
strategies
- for collisions
- for clustering
- for table size
- for growing the hash table

Extendible hashing
- great when can’t fit hash in memory
- use keys themselves to point to the location necessary to retrieve data
 - related to how B trees work
- allow quickly grow the hash table at constant cost
- Example
Application

- anyone know how Google works from a data structure point of view

- runtime ??

Search engine technology

- generally search engines work in the following way:
 - collect documents e.g. webpages
 - index information
 - wait for search
 - understand query
 - search and match
 - scoring system
Any ideas how to design a search engine so that you can quickly find results?

- hash table of search words
- inverted index table
Vector Model

- Each document is a vector in an n-dimensional vector space of search terms
- Take query and find closest points
- Sparse (very)
- If one word tokens, order will be ignored

Algorithm

- First we generate a master word list
- Can strip out stop words
- Stemming: can also calculate related words i.e. runs and run worry and worrying
master word list

- cat
- dog
- fine
- good
- got
- hat
- make
- pet

A cat is a fine pet
$vec = [1, 0, 1, 0, 0, 0, 1];$

- many ways of calculating similarity between search term and documents

- cosine
- can generate relevance scoring
General issues

- Better parsing
- Non-English Collections
 - stemming
 - stop words
- Similarity Search
 - can combine a few docs to find similarity
- Term Weighting
- Incorporating Metadata
- Exact Phrase Matching

Switch Back

- let's get back to our data structures
 - Lempel-Ziv compression
 - how it works
 - LZW
 - where used
More DS

- Searching

Simple

- So it's straightforward to sort in $O(N^2)$ time
 - Insertion sort
 - Selection sort
 - Bubble sort
More complicated

- Shell Sort
 - This is an $O(N^{1.5})$ algorithm that is simple and efficient in practice
 - originally presented as an $O(N^2)$ algorithm
 - complicated to analyze
 - took many years to get better bounds

More Complex

- $O(N \log N)$ algorithms
 - merge sort
 - heapsort
Quicksort

- worst case $O(n^2)$
- average case $O(N \log N)$

 - will learn how to make the worst case occur with such low probability that we will end up dealing with average case

Selection sort

- anyone remember how this one works??

- 2 arrays, sorted and unsorted
- keep choosing min from the unsorted list and append to sorted
Bubble Sort

- Anyone ??

- iterate and swap out of ordered elements

Insertion sort

- this is the quickest of the $O(N^2)$ algorithms for small sets
Insertion

- sort 1st element
- sort first 2
- sort first 3
- etc

```java
insertionSort(array a, int length) {
    int i := 1;
    while (i < length) {
        insert(a, i, a[i]);
        i := i + 1;
    }
}

insert(array a, int length, value) {
    int i := length - 1;
    while (i ≥ 0 and a[i] > value) {
        a[i + 1] := a[i];
        i := i - 1;
    }
    a[i + 1] := value;
}
```
```cpp
/**
 * Simple insertion sort.
 */

template <typename Comparable>
void insertionSort( vector<Comparable> & a )
{
    int j;
    for( int p = 1; p < a.size(); p++ )
    {
        Comparable tmp = a[p];
        for( j = p; j > 0 && tmp < a[j - 1]; j-- )
            a[j] = a[j - 1];
        a[j] = tmp;
    }
}

template <typename Iterator>
void insertionSort( const Iterator & begin, const Iterator & end )
{
    if( begin != end )
        insertionSortHelp( begin, end, *begin );
}

template <typename Iterator, typename Object>
void insertionSortHelp( const Iterator & begin, const Iterator & end, const Object & obj )
{
    insertionSort( begin, end, less<Object>() );
}
```
implementation

- so would implementation of the underlying list affect the runtime?
 - how?

- any ideas why these are slow??
 - can you prove it?

Lower Bound

- This is an analysis for simple sorts

- Inversion:
 - an ordered pair \((i,j)\) such that \(i < j\) and \(a[i] > a[j]\)

- Can you find the inversions?
- \([45, 34, 23, 35, 59]\)
So if we swap adjacent items, we only solve at most one inversion

this leads to our slowdown

any ideas?

before continuing....

What would be the average number of inversion on an array of N elements ??
Average inversions

\[\frac{N(N-1)}{4} \]

- Let L be an unsorted list of elements
- Let L_r be the reverse of that list
- Any two elements are inverted either in L or L_r

- need to look at the pairs

\[\frac{N(N-1)}{2} \]

- pairs in L
- on average \(\frac{1}{2} \) will be inverted
- so how does swapping affect the number?
so how to do better than N^2?

Shell sort

- idea was to look at elements which are not adjacent
- Example:
 - look at every 8th element and do insert sort on those
 - slide window
 - Now look at every 4th
 - Every 2nd

- Increment series
Increment series

- we have an increment series
 \(h_1, h_2, \ldots, h_k \)
- \(h_k \) must be less than \(N \)
- \(h_1 \) must be 1
 - why?

- each step keeps it sorted for last step

\(h_k \) sorted

- An array is \(h_k \) sorted
- for every \(i \) \(a[i] \leq a[i + h_k] \)

- we use diminishing increments
- Example
as long as last increment is 1, we are guaranteed to sort

if we only do 1
 what is it?

let's look at the code

```c
void shellsort(int a[], int len) {
    for (int gap = len/2; gap > 0; gap /= 2) {
        for (int i=gap; i<len; i++) {
            int tmp = a[i];
            int j=i;
            for (;j>=gap && tmp < a[j-gap]; j-=gap) {
                a[j] = a[j-gap];
            }
            a[j] = tmp;
        }
    }
}
```
So what is the increment series here??

- 1 2 4 8 16 .. 2^k $\Theta(N^2)$

- Hubert
 - 1 3 7 .. 2^k-1 $\Theta(N^{1.5})$

- bizarre sequences
 - $\Theta(N^{1.3})$

worst case runtime

<table>
<thead>
<tr>
<th>Start</th>
<th>1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>After 8-sort</td>
<td>1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 16</td>
</tr>
<tr>
<td>After 4-sort</td>
<td>1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 16</td>
</tr>
<tr>
<td>After 2-sort</td>
<td>1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 16</td>
</tr>
<tr>
<td>After 1-sort</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16</td>
</tr>
</tbody>
</table>
Heapsort

- Heap sort worst case $O(N \log N)$
 - average is slightly better
 - $2N (\log N - \log \log N - 4)$

- can save space using the same array
 - example

Better times

- lets start with better than n^2 sorting
merge sort

- if list has one element
 - return
- else
 - mergesort left half
 - mergesort right half
 - merge 2 halves

Example

```cpp
/**
 * Merge sort algorithm (driver).
 */

template <typename Comparable>
void mergeSort( vector<Comparable> & a )
{
    vector<Comparable> tmpArray( a.size() );

    mergeSort( a, tmpArray, 0, a.size() - 1 );
}

/**
 * Internal method that makes recursive calls.
 * a is an array of Comparable items.
 * tmpArray is an array to place the merged result.
 * left is the left-most index of the subarray.
 * right is the right-most index of the subarray.
 */

template <typename Comparable>
void mergeSort( vector<Comparable> & a,
                vector<Comparable> & tmpArray, int left, int right )
{
    if ( left < right )
    {
        int center = ( left + right ) / 2;
        mergeSort( a, tmpArray, left, center );
        mergeSort( a, tmpArray, center + 1, right );
        merge( a, tmpArray, left, center + 1, right );
    }
}
```
Analysis

- Lets do some simple analysis on mergesort running times

- Assume we have N items
 - N being a power of 2 so we can split nicely
 - if N is one, constant time to mergesort
 - else its 2 * N/2 mergesorts

- Define function
 - T(N) = time to mergesort N items

- T(1) = 1
- T(N) = 2T(n/2)+N

- how to solve this ??
- This is a recurrence relationship

- In discrete do this all the time

First method: Telescoping

- Trick is what to divide by

 \[
 \frac{T(N)}{N} = \frac{2T\left(\frac{N}{2}\right)}{N} + 1
 \]

- What happens when you add 2 consecutive ones??

 \[
 \frac{T(N)}{N} = \frac{T\left(\frac{N}{2}\right)}{\frac{N}{2}} + 1
 \]

 Now for next

 \[
 \frac{T\left(\frac{N}{2}\right)}{\frac{N}{4}} = \frac{T\left(\frac{N}{4}\right)}{\frac{N}{4}} + 1
 \]

 ... \[
 \frac{T(2)}{2} = \frac{T(1)}{1} + 1
 \]
Solution

\[\frac{T(N)}{N} = \frac{T(1)}{1} + \log N \]

\[T(N) = N \cdot T(1) + N \log N \]

limitations

- telescoping is great, but sometimes hard to find what to divide by
- substitution is another method
substitution

$T(N) = 2T(N/2) + N$

sub $N/2$

$T(N/2) = 2T(N/4) + N/2$

go back to original

$T(N) = 4T(N/4) + 2N$

what do you get in the end ??
\(T(N) = 2^K T(N/2^K) + KN \)

bottom line

- **telescoping**
 - more scratch work
- **substitution**
 - more brute force
 - easier when don’t have a clue
end of the day

- Mergesort
 - $O(n\log n)$

 - if so good why not the default one?

reality

- requires extra temporary array
- copying is slow....sometimes
 - constant time to the big O runtime will catch up to you

- Great for external sorting
Next

- cue dramatic music

- QUICKSORT

Quick sort

- fastest currently known sort
 - Average $N \log N$
 - Worst: N^2
Quicksort

- if one element return
- else
 - pick a pivot from the list
 - split the list around the pivot
 - return quicksort(left) + pivot + quicksort(right)

- Lets do an example

issues

- How does worst case happen?
- how to pick the pivot?
Pivot #1

- use the first element of the list

- pro/cons?

- sorted list will always be N^2
Pivot #2

- choose random element for pivot

- pro/cons ?

- great performance

- expensive to generate random number
Pivot #3

- Choose median value from the list

- pro/cons?

- hmmm don’t you need a sorted list to get median?

- actually there is a linear algorithm for this 😊 will be doing it on homework
Pivot #4

- Median of 3

- since #3 isn't cheap, can grab 3 elements and take median
 - can even use random if you don’t mind

OK lets have a quiz!!

- actually, just submit feedback after next slide
- and let me know which topics you would like to see covered in Wednesday
For next time

- please complete the homework, and make sure you understand the solutions (correct ones)
 - if late, let weijen know you are submitting late
 - in general (for last 2) submit theory as early as possible and let him know you are doing it
- do all reading (see online)
- review before the exam (will be limited timed)
 - If I can get it to work 😊