Announcements

- midpoint of semester today
 - make sure you are ok with the material covered so far
Outline

- more trees
 - b trees again
 - compression
- Priority queues
 - heaps
- Hash table DS
 - background
 - design
 - applications

Question

- so what is the point of a tree structure ??
- what is the point of a binary search tree ??
B Tree

- great when can’t fit the data in memory
- type of search tree
- trying to make getting to data fast
 - increasing width will make getting to data faster

- M
 - maximum number of children per internal node (we did 3)

- L
 - maximum number of data items per leaf

Rules

1. All data stored at leaf level
2. non leaf nodes store M-1 keys
3. root is either leaf or has between 2 and M children
4. All internal nodes have between M/2 and M children
 1. restricts branching factor
5. All leaves are on the same depth and have between L/2 and L children
Key
- the internal node key represents the smallest value on the i+1th subtree

Leafs can be any DS you choose

Any ideas on the advantage of the leaf system here??

is everyone comfortable with working with B+ trees
Compression

- Many times we need to compress information
 - scaling factor
 - resource allocation
 - over promise

- lossy compression
 - JPEG
 - PNG

- lossless compression
 - when would this be important?
 - TIF
 - BMP
 - .zip

side note

- is everyone familiar with the tar program??
 - usage
 - how it works?
- ASCII encodes each character as a 7 bit value
- the idea of compression, is to find a better way of representing your information
 - idea: instead of using uniform length codes for everything, use less bits for higher occurring information parts

- Huffman trees allow you to create very good lossless compression tables to be able to quickly compress text

- Huffman algorithm
 - idea
Hoffman compression

1. Create a frequency count of each of your characters in your file
2. Start to build a binary tree always combining 2 lowest frequencies into one tree the resulting frequency is the combined frequencies
3. Going left is 0, going right is 1

Example

- If I counted:
 - E = 29
 - A = 14
 - T = 10
 - B = 4
 - D = 2
 - C = 1
decompression

- So seeing a code, we simply run down the tree
- As soon as we hit a leaf, translate to that character

Compressing text

- How would you use Huffman to compress text??
- What about decompressing
Priority Queue DS

- DS to keep track of priority
 - can say lowest number is highest priority

- insert
- findmin

Heap

- implementation of priority queue
- Heap order property:
 - any parent is as small or smaller than its children

- can use array representation:
 - no links to manage
 - but need to estimate largest size ahead of time
- used everywhere
 - service priority
 - Operating systems – juggling threads, processes and processors

Example

- When we are interested in k^{th} smallest number in a large number set

- can sort and then pick it out
 - what is the run time ??

- can create BST
 - how will this help
 - what is the run time ?

- can create heap and do k findmin
 - what is the run time ??
percolate up

- insert operation
- idea: bubble up till we reach correct location on the tree

1. create hole in tree to hold value
2. Does it fitdone
3. else: switch with parent and try again

Runtime for this ??

findmin

- so now we need to find min....
- what is the run time for finding the min ??
- what if we want to find and delete ??
percolate down

- pull out the root
- put hole
- swap with smaller child
- bubble down the hole

run time

- how long would it take me to find an item of specific priority??

- any ideas on how to help this?
building a heap

- given a set of N items what is the fastest way of building the heap??

easy solution

- just do N inserts
 - worst case will be $O(n \log n)$

- when heaps invented that was best way

- they actually have a linear time algorithm...any ideas?
linear time build

- start in middle
- work way back up

why it works?

D-heaps

- we were doing binary heaps, but no reason can't have larger branching factor

issues:
 - when would be the best time to use heaps?
 - how to structure it if can't fit entire heap in memory?
change of pace

- so can we summarize the runtimes for the DS we have covered ??

Question

- if we have 10,000 items
 - how would you store it to quickly support find?

- now what if you only had 20 items
 - how would this be different
Hash Table DS

- This data structure is for organizing an unordered set of items
- find
- insert
- delete

Comparison of average runtime

- Best Tree:
 - AVL
 - find
 - insert
 - delete

- Hash Table
 - find
 - insert
 - delete
Hash Function
- mapping function between items and locations in the hashtable

let me do a graphical example with a bunch of names

Issues
- What hash function to use?
- What do you do about collisions?
Example

- Let's say you need a dictionary

- For each word insert in hash table
 - runtime ?

- When I need to look up a word call find on hash table
 - runtime ?

hash functions

- The truth is that hash functions should be based on the data

- Let's step through some examples
Option 1: integral keys

- items are numbers
- can use them directly to compute hash

\[\text{Hash(key)} = \text{key} \% \text{Tablesize} \]

Example

Question: why not use randomness to make sure to avoid collisions?

Option 2: String key

- Hash(key) = sum of ascii values

\[\text{Hash(abc)} = 97 + 98 + 99 \]

any idea if this will work?
Counter example:
- dictionary
- tablesize 40,000
- what is the maximum word size
- what would be the max value returned by the hash ??

Option 3: power
- lets add some spread to the summation

Hash(ley) = key[1] * 26^0 + key[1] * 26^1 * ..key[i] * 26^i
issues

- non uniform distribution of characters in the english language
- only 28% of your table will actually be reached
- collisions!

Option 4: Adjusted power

- \(\text{Hash(ley)} = (\text{key}[1]\cdot37^0 + \text{key}[1]\cdot37^1 \cdot \ldots\cdot\text{key}[i]\cdot37^i) \mod \text{tablesiz}\)
- need to make sure it will be positive
- java uses \(31^i\)
- performs well on general strings
- ok so now we know how to get things into the table

- what do you do when 2 things map to same array location ??

Option 1: Separate Chaining

- At each array location have a linked list
 - how would the insert in the LL work ?

- how do you perform a find on the hash table ?
Option 2: open addressing

- if collision occurs, will try to find alternate cell in the array to store item
- let's see how this works

strategy

- first try hash(x)
- if full
 - try Hash(x) + f(i) % tablesize to locate

- f is used to move around the array to find a location to use
- different options, any ideas?
Linear probing

- $f(i) = i$

Example

- can you think of any issues?

Clustering

- linear probing suffers from a problem called clustering

- domino affect
Quadratic probing

- \(f(i) = i^2 \)

- how will this affect clusters?

Theorem

- if quadratic probing is used and table size is prime, and table is at least half empty then we will always find a spot for a new element
Option 3: Double Hashing

- Apply a second hash function H_2 and probe at distance $i \times \text{hash}_2(x)$

- $f(i) = \text{rehash}(i)$

- $\text{hash}(x) + i \times f_i(x)$

Note:
1. can’t return 0
2. entire table must be addressable

Load factor

- number of element
- divided by
- table size
growing

- So how do you resize a hash ??

deletion

- how would deletion work

- any issues?
Extendible Hashing

- setup similar to B+ tree
- hashing routine which has growth built in
- use partial bits for keys
- when need to grow will use more bits

question

- from the data structures we have covered which is the most space efficient ??
Wrapping up

- Say you want to add a new operation to heaps

- DecreasePriority \((p,d)\)
 - want to subtract \(d\) from priority \(p\)
 - any ideas on run time ??

Next time

- Reading
 - chapter 5, chapter 7