Compiling Esterel into Better Circuits

Jia Zeng
Department of Computer Science
Columbia University, New York
Esterel

- Characters effecting circuitry translation
 - High level control constructs
 - More complex, more challenges
 - Better understanding of program behavior
 - Enable aggressive optimization
 - Explicit and implicit pause statement
 - Implicit state machine
3 Stages of Circuit Translation

1. State assignment
 - Base on Program Dependence Graph (PDG) [9,2]

2. Hardware synthesis
 - Straight forward when coding has been chosen

3. Circuit optimization
 - 1) sequential optimization
 - State encoding
 - 2) combinational optimization
 - SIS
An Example of PDG

An example program:

```
abort
[
  await A; await B
  ||
  await C;
]
when D;
pause;
```
State Encoding

- **Heuristic Search**
 - Find a solution with fewest latches under the requirement
 - Or, exhaust the search space

- **Search Space**
 - 1. Berry’s one-hot encoding [1]
 - 2. Edwards’s group-hot-by-level encoding [2]
 - 3. Variant
Classic State Assignment

- Based on Finite State Machine
- Reduce reachable state by minimizing the incomplete specified machines
NOVA: Two-level logic optimization

- Basic concept: State code adjacency
- Constraint satisfaction to graph-embedding problem
- Best strategy: iohybrid_code
 - ihybrid_code
 - 1 Partition input constrains to SIC, RIC
 - 2 Encode with minimum length under SIC
 - 3 Increase embedding cube to satisfy RIC within encoding space
 - ihybrid_code + output constrains
MUSTANG: Multilevel logic optimization

- Basic concept: State code adjacency
- Aim: maximize the size and number of common cubes
- Tool: Attraction Graph with weighted edges
Berry’s Method of Translation

- First outlined in 1992 [1]
- Hardware synthesis
 - Sub-circuit for each statement
 - Registers only for pause statement
- Encoding leaf states by one-hot coding
 - Encoding/decoding circuits are trivial
 - Reachable state space redundant
Sentovich, Toma and Berry: the technique latches reducing

Steps:
1. Compute reachable state set using BDDs
2. Remove sequential redundancies and re-synthesizing the circuit
Edwards’s Advanced Method

1. CFG: New structural translation
 - More efficient at removing redundant circuits than removing by analyzing the circuit

2. Better state encoding
 - High level encoding – greater flexibility and larger encoding space

3. Don’t care information
 - Helpful to logic synthesis
Bibliographies

Bibliographies

Bibliographies (cont)

Bibliographies (cont)

Bibliographies (cont)
