Announcements

• Homework 4 due date changed
• Vipul will lead a review session next class
• Final exam December 20
• Do class evaluations
Outline

• Program Analysis
 – complexity measurements

• Answer the question:
 – how do our algorithms (programs) behave in general?

• Overall considerations
Computer Science Theory

- **Computability**
 - whether or not a problem is solvable
 - classify problems as solvable or not

- **Complexity**
 - whether or not a problem is difficult to solve
 - classify problems as easy or hard
The Goal

• Programming is a problem-solving activity

• Even if a problem can be solved:
 - measure the quality of the solution
 - time requirements
 - space requirements

• You see this tradeoff in HW4
HW4

- Brute force searching
- Saving the “right amount” of intermediate transformations to amortize the cost in future runs
- In-memory vs. on-disk dictionary
 - data structure/representation
 - fast access in one, large space in another
Measuring Time Complexity

• Amount of work done measured as a function of input size (N)
 – for a graph, may be size of V + E
 – for a string, the length

• “Number of steps” or basic operations
Cases

• **Worst case**

• **Best case**

• **Average case**

• **Example: linear search**
Expressing Complexity: Big-O

• The number of steps is usually a complex expression

• So we estimate
 - asymptotic analysis
 - running time on large inputs
 - consider only the highest order terms

• $f(n) = 2n^2 + 5n^3 + 7n + 89$
Big-O Definition

• Let \(f \) and \(g \) be 2 functions \(f, g : \mathbb{N} \rightarrow \mathbb{R}^+ \)

• Say that \(f(n) = O(g(n)) \) if positive integers \(c \) and \(n_0 \) exist so that for every integer \(n \geq n_0 \):
 \[
 f(n) \leq cg(n)
 \]

• Thus, \(g(n) \) is an upper bound for \(f(n) \)
Example

• \(f(n) = 5n^3 + 6 \)
 Let \(c = 6 \) and \(n_0 \) be 10

• if \(g(n) = cn^4 \), this is still valid. We can be arbitrarily large
The PATH Problem

• Given $G = (V, E)$
 - is there a path from s to t?
 - brute force is m^m, where m is sizeof(V)

• Solution:
 - BFS: mark nodes reachable from s at distance 1, distance 2, distance 3, etc.
 - solvable in polynomial time (P)
Hard Problems

• Cryptography
 - message decoding should be exponentially hard in the size of the input
 - a key is combined with a plaintext to produce ciphertext