E6998-02: Internet Routing

Lecture 1
Introduction

John Ioannidis
AT&T Labs - Research
ji+ir@cs.columbia.edu

Copyright © 2002, 2003 by John Ioannidis
Announcements

Instructor: John Ioannidis, pronounced *jay-eye*
Email: <ji+ir@cs.columbia.edu>
 - Mail to anything else will not be answered.
Class web page: http://www.cs.columbia.edu/~ji/F03/
 - Check frequently!
 - Slides will be available there.
 - As will additional reading material (papers, RFCs, source code, man pages, etc.).
Class BBoard: coms6998-002-023@columbia.edu (to post), or
 https://www1.columbia.edu/sec/bboard/023/coms6998-002/
Office hours: MW 15:00-16:00 or by appointment.
TA(s): Angelos Stavrou, <angel@cs.columbia.edu>
TA office hours: TR 13:00-14:00.
The Necessary Evil

• Four homeworks: 10% each
• Midterm: 25%
• Final: 35%
• Class participation: at my discretion.

• Project may substitute for final with prior instructor approval.
Homeworks

• 1-2 weeks each.
• Look at the web site for announcements.
• Don’t start the night before, you won’t finish it.
• Involve some coding, some reading, some writing.
• Each counts for 10% of your grade.
• Submitted over email.
 - ji+hw\text{n}@cs.columbia.edu, \text{n}=1\ldots4
• Only plain text or .pdf files accepted.
 - MS Word \textit{etc.} strictly forbidden.
• Individual submissions.
 - Cheaters will be given an F in the course and sent to the Dean for further processing.
Exams

- Usual rules apply.
- Closed book.
Project (optional)

• Sizeable project to demonstrate your mastery of the material:
 - Coding.
 - Simulation.
 - Survey or original research paper.

• Individual or in groups of up to 3 people.
 - Past experience shows that individual projects are impossibly hard.
 - Group gets grade; members decide how to apportion the grade.
 - More work than just taking the final, but worth it.
 - Ask me for ideas.
Class Participation

• Fun for me.
• Shows you are paying attention.
• May affect your grade.
• No mobile phones or other interruptions.
• Ask questions early and often:
 - I may be assuming that you know something when you don’t (frequent).
 - I may not be explaining something well enough (rare!).
• If you are having trouble with the material, talk to me or the TA. Don’t wait until it’s too late!
• “Class Participation” also means participating in bboard discussions and coming to office hours!
Prerequisites

- **Formal:**
 - W4118 (Operating Systems) and W4119 (Networks).

- **Essential:**
 - Fluency in C, C++, and Java recommended.
 - Sockets programming.
 - TCP/IP operations.
 - Have heard of the concept of routing.
Course Outline

• Intro (1)
• Routing and Addressing architectures (1)
• Unix routing implementation (2)
• Bridging (1)
• Distance-Vector routing (2)
• Link-State routing (1)
• OSPF (3)
• Interdomain routing (1)
• BGP (6)
• Overlay networks (1)
• Multicast (1)
• Operations and traffic engineering (2)
• Guest lectures (1-2)
• Advanced topics (if we have time)
Networking in a Nutshell

- *Nodes* (hosts and routers) connected by *links*.
- Each node has an *address*.
 - Unique (usually).
 - Used to find node in network.
- Internet is a *packet-switched network*.
- Based on IP, a *best-effort, connectionless* protocol.
 - “The Network delivers bits” (and does little else).
 - No guaranteed delivery.
 - No guaranteed in-order delivery.
 - No guaranteed correct delivery.
- Additional functionality implemented at the end nodes.
- Ancillary protocols needed to make it work.
No Such Thing as Presentation Layer!

- Forget what you learned about the 7-layer model!
- Layering as a conceptual tool.
 - Lots of “layer violations” in practice.
 - Don’t be fundamentalist!

- Several layers:
 - Application
 - Transport
 - Network
 - Internet
 - Subnet
 - Link
 - Physical

We’ll be concentrating on these
PDUs, PSUs, and other TLAs

- Protocol Data Units/Protocol Service Units.
- ISOisms, we don’t like them - we don’t use them.

- Link and below: **frame** (ethernet frame, PPP frame).
- Transport:
 - **packet** (UDP packet, ICMP packet).
 - **segment** (TCP segment).
 - Some implication about block-oriented vs. stream-oriented abstractions.
- Above transport: wrong course.

- **Payload**: useful stuff carried inside a frame/packet/whatever.
- **Header**: what’s not the payload!
Forwarding, Routing, Switching, Bridging

- Node has packet to send.
 - If it is for that node, send it up to higher-layer protocols.
 - Else, figure out which network interface to send it out on and/or what the next hop is.

- **Forwarding**: the problem of deciding which interface to send it out on.
 - Code/hardware on nodes (hosts/routers) does that.

- **Routing**: the problem of figuring out which interface/next hop is appropriate.
 - Combination of *routing protocols* and code on nodes.

- **Switching**: (usually) forwarding operations at <= Layer 2.
 - Also used to imply that state is kept.

- **Bridging**: Layer-2 routing.
Forwarding in a Nutshell

- Node has packet to send.
- Figure out
 - which network interface to send it out on.
 - who to send it to ("next hop").

- Two machines on the same physical link:
 - Only one interface.
 - Only one possible next hop.
Forwarding in a Nutshell

- Node has packet to send.
- Figure out
 - which network interface to send it out on.
 - who to send it to ("next hop").

- Two machines NOT on the same physical link:

- Hop-by-hop forwarding.
 - May require setup and hard state (circuit switching).
Forwarding Can Happen at Any Layer

- Physical layer: connect wires together!
 - Does not scale at all.
- Link layer: bridging.
 - Independent of network protocol.
 - Can be kludged to work with similar link protocols.
 - Scales to a few hundred nodes.
- Network layer: routing.
 - Independent of link protocols.
 - Has scaled to tens of millions of nodes.
- Higher layers.
 - Application-specific.
 - CDNs etc.
Internet Routing in a Nutshell

The Internet...
Internet Routing in a Nutshell

...consists of many individual networks...
Internet Routing in a Nutshell

...linked at Border Routers...
Internet Routing in a Nutshell

Interdomain routing protocols the coarse flow of packets.
Internet Routing in a Nutshell

Interdomain routing protocols the coarse flow of packets.
Paths are not necessarily symmetric.
Internet Routing in a Nutshell

- Each network is responsible for moving packets inside it.
- **Intradomain routing** is (mostly) independent from **Interdomain routing**.
Routing can happen at all layers

- Physical: move connectors around!
- Link: “bridging”
- Network: “routing”
- Transport: redirectors (avoid).
- Application: ALG (definitely wrong course).

- We shall briefly examine bridging.
- We shall mostly learn about network-layer routing.
Types of Links/Networks

- Point-to-point
- Point-to-multipoint
- Broadcast
- Non-broadcast Multiple Access (NBMA)
Point-to-Point

- Two nodes connected by a real or virtual “wire”.
 - Copper wire, fiber strand, microwave link.
 - Dialup, ATM or FR PVC (permanent virtual circuit)
- No need for link-layer addresses.

- WANs are made of point-to-point links.
Broadcast

• Or Broadcast Multiple Access.
• Many nodes connected to a shared (physical) medium.
• All nodes on “local” network hear each other’s transmissions.
• Frame carries link-layer address of destination.
 - Destination “hears” frame, picks it up.
• Ethernet, token ring, wireless, ... (IEEE 802.*)

• Mostly a LAN technology.
Non-Broadcast Multiple Access (NBMA)

• Virtual LAN:
 - Made of Point-to-point links.
 - Behaves like a Multiple Access network.
• Nodes do not hear each other’s transmissions.
 - Frame still carries link-layer address of destination.
 - Switching fabric gets packet to destination.
• One L3 technology tunneled over another L3 technology.
• ATM, Frame Relay, X.25, IP-over-IP, ...

• Mostly a WAN technology.

• ATM made an attempt to be used as a LAN (“LANE”).
Before the next class

- Read RFC791 and RFC1958.
- Read Perlman Chapters 1&2.