Announcements

Lectures 1-5, 7 are available.
Lecture 6 has no notes.
Lecture on 9/26 will be at 4:10pm in 1024.
W4180 on 9/26 will be at 2:40pm in 1127.
Homework 2 is due on Thursday at 3am.
 Don’t submit it late, I won’t accept it.
 Get a good night’s sleep, I need you awake in class!
Distance-Vector [repeat]

• Variations of Bellman-Ford algorithm.
• Each router starts by knowing:
 – Prefixes of its attached networks (“zero” distance).
 – Its next hop routers (how to find them?)
• Each router advertises only to its neighbors:
 – All prefixes it knows about.
 – Its distance from them.
• Each router learns:
 – All prefixes its neighbors know about.
 – Their distance from them.
• Each router figures out, for each destination prefix:
 – The “distance” (how far away it is).
 – The “vector” (the next hop router).
DV Computes the Shortest Path

• **DV protocols are variants of the “distributed Bellman-Ford Shortest-Path algorithm”**.

• “Routing by rumor”.
 – Each router believes what its neighbors tell it.

• **In steady-state, each router has the “shortest” (smallest metric) path to the destination.**

• Convergence time is (on the average) proportional to the diameter of the network.

• Any link change affects the entire network.
D V

A: 0
B: 1, B
C: 2, B
E: 2, B

B: 0
A: 1, A
E: 1, E
C: 1, C
D: 2, C
G: 2, C
F: 2, E

C: 0
B: 1, B
D: 1, D
G: 1, G
A: 2, B
E: 2, B

G: 0
C: 1, C
D: 1, D

F: 0
E: 1, E
Counting to Infinity

• What happens when a link dies?

```
A:0
B:1,B
C:2,B

A:1,A
B:0
C:1,C

A:2,B
B:1,B
C:0
```
Counting to Infinity

• What happens when a link dies?

A: 0
B: 1, B
C: 2, B

A: 1, A
B: 0

A: 2, B
B: 1, B
C: 0
Counting to Infinity

- What happens when a link dies?

```
A:0
B:1,B
C:2,B

A:1,A
B:0
C:3,A

A:2,B
B:1,B
C:0
```
Counting to Infinity

- What happens when a link dies?

```
A: 0  A: 1, A  A: 2, B
B: 1, B  B: 0  B: 1, B
C: 4, B  C: 3, A  C: 0
```
Counting to Infinity

- What happens when a link dies?

A: 0
B: 1, B
C: 4, B

A: 1, A
B: 0
C: 5, A

A: 2, B
B: 1, B
C: 0

- And so on.

- Counting to infinity can take a long time.
- RIP defines infinity as 16.
- When infinity is reached, the route to C is declared dead.
Split Horizon

- To combat the effects of counting-to-infinity.
- Routers do not announce routes to the link from which they learned them.
Split Horizon

A: 0 → A: 1, A → A: 2, B
B: 1, B ← B: 0 → B: 1, B
C: 2, B ← C: 1, C ← C: 0
Split Horizon

- What happens when a link dies?

![Diagram showing split horizon]

- A:0
 - A:1,A
 - B:1,B
 - C:2,B

- B:1,B
 - A:2,B
 - B:0
 - C:0

- C:0
Split Horizon

- What happens when a link dies?

- Route to C expires after it hasn’t been refreshed for a while.
- This way we avoid counting to infinity.
Split Horizon with Poison Reverse

- Instead of suppressing routes, advertise them with infinite metric:

```
A:inf  A:1
B:0
C:1  C:inf
```

```
A:inf  A:2
B:inf  B:1
C:0
```
Split Horizon with Poison Reverse

• When the A-B link goes down, B believes C’s announcement:

```
A   B   C   D
```

```
A:inf
B:0
C:1  C:inf
```

```
A:inf  A:2
B:inf  B:1
C:0
```
Split Horizon with Poison Reverse

• Which he propagates (obviously as infinity)
Split Horizon with Poison Reverse

- Letting C know that A is now unreachable.

- SHwPR speeds protects against incorrect routes that may appear.
- Bad news is better than no news!
Split Horizon Does not Always Work

Diagram:

- A
- B
- C
- D

A:0 → B:0 ↔

C:0 → D:0
Split Horizon Does not Always Work

A:0
B:1,B

A:1,A
B:0
C:1,C
D:1,D

B:1,B
C:0
D:1,D

B:1,B
C:1,C
Split Horizon Does not Always Work

A:0
B:1,B
C:2,B
D:2,B

A:1,A
B:0
C:1,C
D:1,D

B:1,B
C:0
D:1,D
A:2,B
Split Horizon Does not Always Work
Split Horizon Does not Always Work

A:0 B:0 C:1,C D:1,D

B:1,B
C:0
D:1,D
A:3,D

B:1,B
C:1,C
A:3,C

D:0
Split Horizon Does not Always Work

A: 0

A: 3, C
B: 0
C: 1, C
D: 1, D

B: 1, B
C: 0
D: 1, D
A: 2, B
Triggered Updates

- (aka Flash Updates).
- If a metric changes (up or down), a router immediately propagates that change.
- Decreases convergence time.
- Regular updates still occur.
- Only include prefixes that actually triggered the update.

- It’s obvious.
- But RIP didn’t do it this way initially.
- Bad information can also propagate very quickly.
Holddown Timers

- If a route metric increases, no new updates for that route are accepted until the holddown timer expires.
- Too short – ineffective.
- Too long – increases convergence time.
Asynchronous Updates

• Left unattended, DV routers on a broadcast network synchronize themselves.
• Increased collisions (even with Ethernet CD and exponential backoff).

• Add jitter to each update period (~15%).
RIP (v1)

- Simplest of the DV protocols currently in use.
- Traces its ancestry to the PUP GWINFO and XNS RIP.
 - Apple RTMP and IPX RIP also trace their ancestry to XNS RIP.
- 4.2BSD (1983) implements RIP in routed(8).
- RFC 1058 written in 1988!

- UDP-based, Port 520, broadcast.
- Classful.
- Request and response messages.
- Metric is hop-count.
- Infinity is 16.
RIP (v1) Cont’d

- On startup, broadcast request on all interfaces.
- When a request is received, a response is sent.
 - Response contains entire routing table.
- A response is also gratuitously sent every 30s (jittered).
 - Contains full routing table minus entries suppressed by SHwPR.
- Routes are invalidated (set to 16) after 6 update periods.
- Routes are flushed after another 4 update periods.

- Triggered updates do not reset the update timer.
 - TU cannot be re-triggered for 1-5 seconds.
RIP (v1) Cont’d

• When a response is received:
 – If the route is not in the table, it is inserted.
 – If the route has the same metric, exp timer is reset.
 – If the route has a lower metric than what is in the table, it replaces it.
 – If the route has a higher metric AND update came from same router:
 • Marked as unreachable for holddown period.
 • If adv persists beyond holddown period, route is installed.
RIP (v1) Message Format

<table>
<thead>
<tr>
<th>Command</th>
<th>Version (1)</th>
<th>Reserved (0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IP Address</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reserved (0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metric</td>
<td></td>
</tr>
</tbody>
</table>

≈ Up to 25 route entries ≈

AF (2)	Reserved (0)
	IP Address
	Reserved (0)
	Reserved (0)
	Metric
RIPv2

• Incremental improvement to RIP.
• RFC2453.
• Packets are multicast to 224.0.0.9.
• Additional features:
 – Authentication.
 – Classless.
 – Route tags.
 – Router IP address.
RIPv2 Message Format

<table>
<thead>
<tr>
<th>Command</th>
<th>Version (2)</th>
<th>Reserved (0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Route tag</td>
</tr>
<tr>
<td>AF (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP Address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netmask</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next Hop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metric</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Up to 25 route entries
RIPv2 Authentication

<table>
<thead>
<tr>
<th>Command</th>
<th>Version (2)</th>
<th>Reserved (0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFFF</td>
<td></td>
<td>Auth type</td>
</tr>
<tr>
<td></td>
<td>Auth Data (bytes 0-3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auth Data (bytes 4-7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auth Data (bytes 8-11)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auth Data (bytes 12-15)</td>
<td></td>
</tr>
</tbody>
</table>

- Default auth is just a password (useless).
- Cisco uses an MD5 hash that includes a password (somewhat better).
- Up to 24 route entries follow.
Other DV protocols

- Cisco IGRP and EIGRP.
 - (Enhanced) Interior Gateway Routing Protocol.
 - Proprietary.
 - Flexible (complex!) metric definition.
 - Have areas/autonomous systems.

- Read Doyle and cisco documentation for details.

- BGP is a “path-vector” protocol.
 - We’ll examine it in excruciating detail.

- Older, defunct protocols.
 - EGP/Hello.
Projects

• WAR (Wireless Anonymous Routing).
• ASRAP (AS Routing Authority Protocol).
• IOS config to DML.
• Interface SSF with NAM.
• “Come-From” table feasibility.
• Explore LS protocols for Interdomain routing.
• Packet classifier for BSD routing/tunneling/filtering.
• Routing protocols for overlay networks.
• Route/topology mapping.
• Anything else you can come up with that I will find interesting and appropriate.
Project Mechanics

- Think about what you would be interested in exploring.
- Start thinking about forming groups (1-4 people; 3 preferred).
 - I can play matchmaker.
- Do your literature search (I can point you to relevant papers).
- Pick a project by 10/8.
 - If not, one will be assigned to you by the court.
- Project proposal (2-4 pages) due 10/22.
- Projects (with a 5-minute presentation) are due 12/10.
- Yes, you can do your project as a joint project with another course (e.g., W4180), but the expected output will be scaled accordingly.
- Any code you write should be open-source under a BSD license.
 - Clear this with your corporate lawyers (esp. CVN people)!