E6998-02: Internet Routing

Lecture 2
Bridging

John Ioannidis
AT&T Labs – Research

ji+ir@cs.columbia.edu

Copyright © 2002 by John Ioannidis. All Rights Reserved.
Announcements

Class web page: http://www.cs.columbia.edu/~ji/F02/
Lectures 1 and 2 are available.
Homework 1 is available, due 9/12 at 3am.
 Submissions will be electronic, probably over email.
 Only plain-ASCII or PDF files will be accepted.
I’ve added an announcements page.
Class BBoard: still TBA
Office hours: Tuesdays 16:00-17:30 or by appointment.
I know they conflict with W4180!
TA(s): I’m looking for one. Any volunteers?

Mike Schiraldi <mgs21@columbia.edu> is willing to
organize a bulk order to Amazon. Talk to him.
Link-layer Addressing

- You should already know about this.
- Ethernet-like LANs, MAC address:
 - 48-bit, unique.
 - Flat namespace as far as addressing is concerned.
 - Appears at the beginning of a frame.
 - It’s a name, really.
 - Unicast/multicast addresses.
- Point-to-point connections:
 - No need for a station address.
 - Still need for service/higher layer protocol identifiers.
Connecting LANs

- Plugging them together usually not an option.
 - Distance limitations.
 - Capacity limitations.
 - Administrative/security limitations.
Bridges

- Link two or more broadcast LANs together.
- Work at the link layer.
 - Only look at MAC addresses.
- Why?
 - Capacity.
 - Distance.
 - Some technologies (TR) have problems with # of nodes.
- None of these problems are solved by repeaters (layer 1).
Why Bridges and not Routers?

- Originally, accommodate layer-2 only nodes.
- Then,
 - multiprotocol considerations.
 - Performance (cheaper/faster throughout the 80s).
 - before subnetting/VLSM.
- Still useful to move IP nodes around.
- Modern switches are really bridges.
- Good for linking similar LAN technologies.
Ethernet Bridges

- The box in the middle is a bridge.
- Dumb bridge:
 - Just copies all traffic between the LANs.
 - Little more than a repeater (increases distance).
 - Does not increase total network throughput. But:
 - May have enough buffer capacity.
 - May drop packets that didn’t need forwarding.
Improving the Dumb Bridge

- Slight improvement:
 - Tell bridge which nodes are on which side, or
 - Tell bridge which MAC addresses to forward.
 - Assign MAC addresses hierarchically.
 - Usually infeasible, MAC address in PROM.
- All of these involve too much configuration.
- They also don’t scale up.

- Things get worse for bridges with multiple interfaces.
The Learning Bridge

• Bridge listens promiscuously.
• Store source MAC address in cache, indexed by port.
• Look up dest MAC address:
 – If not in cache, forward to all ports.
 – If in cache AND on different segment, forward to port connected to that segment.
• Cache entries are aged, replaced by LRU.
<table>
<thead>
<tr>
<th>Packet</th>
<th>Appears in</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A→C</td>
<td>1,2,3</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A→W</td>
<td>1,2,3</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F→A</td>
<td>2,1</td>
<td>A</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Q→F</td>
<td>2</td>
<td>A</td>
<td>F,Q</td>
<td>F,Q</td>
</tr>
<tr>
<td>R→C</td>
<td>3,1,2</td>
<td>A</td>
<td>F,Q</td>
<td>R</td>
</tr>
<tr>
<td>A→C</td>
<td>1</td>
<td>A</td>
<td>F,Q</td>
<td>R</td>
</tr>
<tr>
<td>C→A</td>
<td>1,2,3</td>
<td>A,C</td>
<td>F,Q</td>
<td>R</td>
</tr>
<tr>
<td>R→C</td>
<td>3,1</td>
<td>A,C</td>
<td>F,Q</td>
<td>R</td>
</tr>
<tr>
<td>N→*</td>
<td>3,1,2</td>
<td>A,C</td>
<td>F,Q</td>
<td>R,N</td>
</tr>
<tr>
<td>F→N</td>
<td>2,3</td>
<td>A,C</td>
<td>F,Q</td>
<td>R,N</td>
</tr>
</tbody>
</table>
LB works for Loop-Free Topologies

- To Bridge 1, the orange and yellow segments look like one segment.
- To Bridge 2, the blue and orange segments look like one.
- Stations don’t have to worry about it.

- What happens if we have a loop?
Loops and Bridging

• Get rid of bridges, find some other technology.
• Forbid loops.
 – Loops are good for redundancy.
 – Loops may happen accidentally.
• Have bridges complain about loops.
 – Can they detect them?
• Add functionality to handle loops.
 – Could do it manually.
 – More interesting to do it automatically.
Graph theory: what is a spanning tree?

• A subgraph containing all the vertices and has no cycles.
• We can assign *weights* to each edge.
 – Even if it’s 1 on all edges.
 – May be interpreted as the cost to traverse the edge.
• Then we can define a Minimum-Weight Spanning Tree.
 – Is it unique?
• Why can’t we use what is in the algorithms book?
Thinking about the ST Algorithm

• The bridges don’t have knowledge of the entire network.
• It’s a distributed computation!
• Any node in a tree can become the root.
 – “pick it up and shake it!”
• Each node has one parent.
 – The way to the root is through the parent.
• Each non-leaf node has children.
 – For which it is the way to the root, and must tell them so.
• Each node selects the best children and the best parent.

• Nodes and LANs can be added and removed; the algorithm must cope with that.
Spanning Tree Algorithm

• Bridges send configuration messages to:
 – Elect a bridge as the root bridge.
 – Calculate shortest path to root bridge.
 – For each segment, elect a designated bridge: the one closest to the root bridge.
 – Designated bridge forwards packets from that LAN toward the root bridge.
 – Choose a port that gives the best path to the root bridge.
 – Select ports to be included in the spanning tree.

• Once a spanning tree has been formed, bridges act as learning bridges.

• Configuration messages keep being sent to detect topology changes.
Bridge Configuration Messages

• Root ID: ID of bridge assumed to be the root.
• Cost: sum of weights of the least-cost-path to root from transmitting bridge.
 – We are introducing the concept of the link metric here.
• Transmitting bridge ID.
• Port ID: transmitting bridge’s port id where message was sent out on.

• Ordering of configuration messages:
 – Compare root IDs.
 – If equal, compare costs.
 – If equal, compare transmitting bridge IDs.
 – If equal, compare ports.
 • Only useful when two ports are connected to the same LAN.
When Topology Changes

• Algorithm as described adapts to additions of links/nodes.
• To handle failures:
 – Stored configuration message for a port is aged.
 • When it reaches max age it is discarded and ST is recomputed (perhaps causing configuration messages to be resent).
 – Root bridge periodically retransmits hello configuration messages, with age field of 0.
 – Downstream bridges do likewise.
• ST recalculation:
 – Receipt of a configuration message.
 – Timing out of a stored configuration message for a port.
Why an Age Field?

• When new bridge comes up it sends configuration message.
• Any bridge hearing that retransmits its (stored) configuration message, but with the current age field.
• Why?
• This way new bridge has a pre-aged configuration message.
• The resulting behavior is the same as it would be if the new bridge had been there since the beginning.
Avoiding Temporary Loops

• Loops are BAD!
 – No TTL for packets at the link layer.

• A loop may form when a bridge turns a port from blocked to forwarding.

• It should wait for some time during which:
 – It propagates hello messages, but
 – It does not propagate data traffic.

• 801.d splits the non-propagating phase in two:
 – Just listen for conf messages.
 – Then listen for data and build the learning cache.
Configurable Parameters

• Max age.
• Hello time.
• Forward delay.
 – Amt of time in the learning/listening states.

• Port ID.
• Bridge priority.
• Port priority.
• Long cache timer.
• Path cost.
Configuration Message Format

- Protocol ID (=0), 16 bits
- Version (=0), 8 bits
- Message type (=0), 8 bits
- Topology Change Ack flag, 1 bit
- Topology Change flag, 1 bit
- Root ID, 64 bits (16 bits priority, 48 bits MAC address)
- Cost of path to root, 32 bits
- Bridge ID, 64 bits
- Port ID, 16 bits (8 bits priority, 8 bits port number)
- Message age, 16 bits, in 1/256ths of a second.
- Max age, 16 bits
- Hello time, 16 bits
- Forward delay, 16 bits
Topology Change Message

• 0x00000080!
Other Bridge Issues

- Multiply connected stations.
- Filtering.
 - By protocol.
 - By MAC address.
- Multicast.
- Remote bridges/half bridges.

- The entire discussion on bridges applies to switches.

- We may talk about source routing bridges later on; read about it in Perlman.