1. Briefly explain the essential difference between
 a) Call-by-value and call-by-reference. How are parameters passed in C and Java?
 b) Static scope and dynamic scope. How is scoping done in C and Java?

2. Java compilation.
 a) Draw a block diagram showing how programs are compiled and executed in Java.
 b) What is a Java just-in-time compiler?

3. Let \(L \) be the set of strings of the form \(abxba \) where \(x \) is a string of \(a \)'s, \(b \)'s, and \(c \)'s that does not contain \(ba \) as a substring.
 a) Write a regular expression for \(L \).
 b) Show how your regular expression generates the string \(ababcba \).
 c) Construct a deterministic finite automaton for \(L \).
 d) Show how your automaton processes the input \(ababcba \).

4. Consider the context-free grammar \(G \):
 \[
 S \rightarrow S + S \mid S * S \mid a.
 \]
 a) Show that \(G \) is ambiguous by constructing all parse trees for \(a + a * a \).
 b) Construct an unambiguous grammar for \(L(G) \) in which \(+ \) is left associative, \(* \) is nonassociative and of higher precedence than \(+ \). Draw the parse tree in your grammar for the input string \(a + a * a \).

5. Syntax-directed translation.
 a) Construct an SDTS that maps postfix expressions containing the digits 0, 1, …, 9 and the binary arithmetic operators + and * into equivalent infix expressions.
 b) Show how your SDTS translates the expression 123+*.
 c) [Extra credit, 10 pts] Modify your SDTS so that it uses the fewest possible number of parentheses in the output.